Properties

Label 2.2016.12t18.d.b
Dimension $2$
Group $C_6\times S_3$
Conductor $2016$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $C_6\times S_3$
Conductor: \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
Artin stem field: Galois closure of 12.0.12950250637492224.3
Galois orbit size: $2$
Smallest permutation container: $C_6\times S_3$
Parity: odd
Determinant: 1.504.6t1.f.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.4536.1

Defining polynomial

$f(x)$$=$ \( x^{12} - 4 x^{11} + 8 x^{10} - 4 x^{9} - 7 x^{8} + 36 x^{7} - 80 x^{6} + 120 x^{5} - 34 x^{4} + \cdots + 625 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{6} + 17x^{3} + 17x^{2} + 6x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 10 a^{5} + 13 a^{4} + 17 a^{3} + 7 a^{2} + 7 a + 8 + \left(16 a^{5} + 9 a^{4} + 15 a^{3} + 11 a^{2} + 10 a + 5\right)\cdot 19 + \left(13 a^{5} + 9 a^{3} + 5 a^{2} + 13 a + 2\right)\cdot 19^{2} + \left(3 a^{5} + 16 a^{4} + 2 a^{3} + 5 a^{2} + 9 a + 14\right)\cdot 19^{3} + \left(4 a^{5} + 16 a^{4} + 8 a^{3} + 13 a^{2} + 15 a + 9\right)\cdot 19^{4} + \left(5 a^{5} + 4 a^{4} + 10 a^{3} + a^{2} + 10 a + 6\right)\cdot 19^{5} + \left(2 a^{5} + 12 a^{4} + 14 a^{3} + 13 a^{2} + 6 a + 6\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 9 a^{5} + 4 a^{4} + 12 a^{3} + 6 a^{2} + 13 a + 1 + \left(15 a^{4} + 17 a^{3} + a^{2} + 16 a + 12\right)\cdot 19 + \left(8 a^{5} + 8 a^{4} + 17 a^{3} + 7 a^{2} + 16 a + 18\right)\cdot 19^{2} + \left(14 a^{5} + 17 a^{4} + 8 a^{3} + 11 a^{2} + 12 a + 14\right)\cdot 19^{3} + \left(11 a^{5} + 18 a^{4} + 14 a^{3} + 16 a^{2} + 2 a + 7\right)\cdot 19^{4} + \left(6 a^{5} + 18 a^{4} + 17 a^{3} + 5 a + 1\right)\cdot 19^{5} + \left(12 a^{4} + 18 a^{3} + 5 a^{2} + 13 a + 17\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 3 a^{5} + 15 a^{4} + 16 a^{3} + 18 a^{2} + 7 a + \left(18 a^{5} + 12 a^{4} + 14 a^{3} + 6 a^{2} + 2 a\right)\cdot 19 + \left(7 a^{5} + 8 a^{4} + 15 a^{3} + 12 a^{2} + 8 a + 17\right)\cdot 19^{2} + \left(13 a^{5} + 2 a^{4} + 10 a^{3} + 16 a^{2} + 11 a + 1\right)\cdot 19^{3} + \left(a^{5} + 4 a^{4} + 12 a^{3} + 16 a^{2} + a + 9\right)\cdot 19^{4} + \left(5 a^{5} + 3 a^{4} + 17 a^{3} + 13 a^{2} + 4 a + 11\right)\cdot 19^{5} + \left(4 a^{5} + 5 a^{4} + a^{3} + 6 a^{2} + 15\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 12 a^{5} + 4 a^{4} + 18 a^{3} + 13 a^{2} + 5 a + 7 + \left(10 a^{5} + 5 a^{4} + 4 a^{3} + 10 a^{2} + 4 a + 1\right)\cdot 19 + \left(5 a^{5} + 16 a^{4} + 14 a^{3} + 5 a^{2} + 16 a + 18\right)\cdot 19^{2} + \left(17 a^{5} + 4 a^{4} + 15 a^{2} + 9 a + 3\right)\cdot 19^{3} + \left(8 a^{5} + 14 a^{4} + 18 a^{3} + 10 a^{2} + 12 a + 13\right)\cdot 19^{4} + \left(18 a^{5} + 14 a^{4} + 12 a^{3} + 8 a^{2} + 10\right)\cdot 19^{5} + \left(6 a^{5} + 7 a^{4} + 10 a^{3} + 17 a^{2} + 13 a + 9\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 12 a^{5} + 4 a^{4} + 2 a^{3} + 10 a^{2} + 6 a + 4 + \left(9 a^{5} + 10 a^{4} + 2 a^{3} + 17 a^{2} + 7 a + 16\right)\cdot 19 + \left(14 a^{5} + 14 a^{4} + 16 a^{3} + 18 a^{2} + 9 a + 1\right)\cdot 19^{2} + \left(a^{5} + 14 a^{4} + 16 a^{3} + 14 a^{2} + 5 a + 17\right)\cdot 19^{3} + \left(5 a^{5} + 16 a^{4} + 18 a^{3} + 14 a^{2} + 15 a + 10\right)\cdot 19^{4} + \left(10 a^{5} + 8 a^{4} + 14 a^{3} + 17 a^{2} + 8 a + 15\right)\cdot 19^{5} + \left(18 a^{5} + 3 a^{4} + 3 a^{3} + 6 a^{2} + 8 a + 13\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 10 a^{5} + 7 a^{4} + 18 a^{3} + 6 a^{2} + 14 a + 15 + \left(8 a^{5} + 4 a^{4} + 11 a^{3} + 4 a^{2} + 8 a + 7\right)\cdot 19 + \left(12 a^{5} + 16 a^{4} + a^{3} + 15 a^{2} + 2 a + 5\right)\cdot 19^{2} + \left(4 a^{5} + 3 a^{4} + 8 a^{3} + 7 a^{2} + 6 a + 7\right)\cdot 19^{3} + \left(15 a^{5} + 8 a^{4} + 7 a^{3} + 13 a^{2} + 10 a + 5\right)\cdot 19^{4} + \left(11 a^{5} + 10 a^{4} + 4 a^{3} + 13 a^{2} + a\right)\cdot 19^{5} + \left(7 a^{5} + 15 a^{4} + 17 a^{3} + 2 a^{2} + 12 a + 14\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( a^{5} + 18 a^{4} + 3 a^{3} + 5 a^{2} + 18 a + 2 + \left(11 a^{5} + 12 a^{4} + 6 a^{3} + 6 a^{2} + 18 a + 5\right)\cdot 19 + \left(12 a^{5} + 7 a^{4} + 5 a^{3} + a^{2} + 14 a + 10\right)\cdot 19^{2} + \left(6 a^{5} + 14 a^{4} + 11 a^{3} + 14 a^{2} + 2\right)\cdot 19^{3} + \left(10 a^{5} + a^{4} + 8 a^{3} + 5 a^{2} + 11 a\right)\cdot 19^{4} + \left(2 a^{5} + 17 a^{4} + 4 a^{3} + 7 a^{2} + 4 a + 11\right)\cdot 19^{5} + \left(3 a^{5} + 9 a^{4} + 7 a^{3} + 14 a^{2} + 14 a + 13\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 13 a^{5} + 18 a^{4} + 16 a^{3} + 6 a^{2} + 13 a + 11 + \left(16 a^{5} + 10 a^{4} + a^{3} + 13 a^{2} + 6 a + 5\right)\cdot 19 + \left(12 a^{5} + 14 a^{4} + 8 a^{3} + 10 a^{2} + 17 a + 15\right)\cdot 19^{2} + \left(11 a^{5} + 3 a^{4} + 11 a^{3} + a^{2} + 5 a + 12\right)\cdot 19^{3} + \left(16 a^{5} + 12 a^{4} + a^{3} + 4 a^{2} + 10 a + 1\right)\cdot 19^{4} + \left(14 a^{5} + 18 a^{4} + 11 a^{2} + 13 a + 15\right)\cdot 19^{5} + \left(9 a^{5} + 17 a^{4} + 12 a^{3} + 17 a^{2} + 11 a + 4\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 14 a^{5} + 13 a^{4} + 6 a^{3} + 2 a^{2} + 17 + \left(9 a^{5} + 7 a^{4} + 17 a^{3} + 14 a^{2} + a + 12\right)\cdot 19 + \left(7 a^{5} + 8 a^{4} + 16 a^{3} + 7 a^{2} + 9 a + 8\right)\cdot 19^{2} + \left(17 a^{5} + 16 a^{4} + 8 a^{3} + 17 a^{2} + 6 a + 5\right)\cdot 19^{3} + \left(5 a^{5} + 16 a^{4} + 10 a^{3} + 16 a + 17\right)\cdot 19^{4} + \left(8 a^{5} + 2 a^{3} + a^{2} + a + 8\right)\cdot 19^{5} + \left(14 a^{5} + 4 a^{4} + 9 a^{3} + 16 a^{2} + 15 a + 10\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 10 }$ $=$ \( 10 a^{5} + 4 a^{4} + 2 a^{3} + 10 a^{2} + 5 a + 13 + \left(6 a^{5} + 18 a^{4} + a^{3} + 18 a^{2} + 14 a + 3\right)\cdot 19 + \left(18 a^{5} + 6 a^{4} + 8 a^{3} + 11 a^{2} + 10 a + 9\right)\cdot 19^{2} + \left(13 a^{5} + 16 a^{4} + a^{3} + 11 a^{2} + 5 a + 9\right)\cdot 19^{3} + \left(12 a^{5} + 18 a^{4} + 17 a^{3} + 2 a^{2} + 18 a + 3\right)\cdot 19^{4} + \left(9 a^{5} + 7 a^{4} + 8 a^{3} + 13 a^{2} + a + 17\right)\cdot 19^{5} + \left(18 a^{5} + 13 a^{4} + 4 a^{3} + 8 a^{2} + 18 a + 11\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 11 }$ $=$ \( 6 a^{5} + 17 a^{4} + 13 a^{3} + 4 a^{2} + 15 a + 9 + \left(2 a^{5} + 2 a^{4} + 16 a^{3} + 8 a^{2} + 8 a + 17\right)\cdot 19 + \left(3 a^{5} + 2 a^{4} + 4 a^{3} + 3 a + 9\right)\cdot 19^{2} + \left(12 a^{5} + 2 a^{4} + 18 a^{3} + 18 a + 10\right)\cdot 19^{3} + \left(3 a^{5} + 5 a^{4} + 17 a^{3} + 11 a^{2} + 11 a + 15\right)\cdot 19^{4} + \left(5 a^{5} + 2 a^{4} + 18 a^{3} + 2 a^{2} + a + 5\right)\cdot 19^{5} + \left(13 a^{5} + 4 a^{4} + 7 a^{3} + a^{2} + 2 a + 5\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 12 }$ $=$ \( 14 a^{5} + 16 a^{4} + 10 a^{3} + 8 a^{2} + 11 a + 12 + \left(3 a^{5} + 3 a^{4} + 3 a^{3} + a^{2} + 14 a + 7\right)\cdot 19 + \left(16 a^{5} + 9 a^{4} + 14 a^{3} + 17 a^{2} + 10 a + 16\right)\cdot 19^{2} + \left(15 a^{5} + a^{4} + 14 a^{3} + 16 a^{2} + 2 a + 13\right)\cdot 19^{3} + \left(17 a^{5} + 18 a^{4} + 16 a^{3} + 3 a^{2} + 7 a\right)\cdot 19^{4} + \left(15 a^{5} + 5 a^{4} + 3 a^{2} + 2 a + 10\right)\cdot 19^{5} + \left(14 a^{5} + 7 a^{4} + 6 a^{3} + 4 a^{2} + 18 a + 10\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(3,4,5)(9,10,11)$
$(1,9,12,11,8,10)(2,4,7,3,6,5)$
$(1,12,8)(2,7,6)(3,5,4)(9,11,10)$
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$$-2$
$3$$2$$(1,11)(2,3)(4,6)(5,7)(8,9)(10,12)$$0$
$3$$2$$(1,5)(2,9)(3,8)(4,12)(6,10)(7,11)$$0$
$1$$3$$(1,12,8)(2,7,6)(3,5,4)(9,11,10)$$-2 \zeta_{3} - 2$
$1$$3$$(1,8,12)(2,6,7)(3,4,5)(9,10,11)$$2 \zeta_{3}$
$2$$3$$(3,4,5)(9,10,11)$$\zeta_{3} + 1$
$2$$3$$(3,5,4)(9,11,10)$$-\zeta_{3}$
$2$$3$$(1,8,12)(2,6,7)(3,5,4)(9,11,10)$$-1$
$1$$6$$(1,6,8,7,12,2)(3,11,4,9,5,10)$$2 \zeta_{3} + 2$
$1$$6$$(1,2,12,7,8,6)(3,10,5,9,4,11)$$-2 \zeta_{3}$
$2$$6$$(1,7)(2,8)(3,10,5,9,4,11)(6,12)$$-\zeta_{3} - 1$
$2$$6$$(1,7)(2,8)(3,11,4,9,5,10)(6,12)$$\zeta_{3}$
$2$$6$$(1,2,12,7,8,6)(3,11,4,9,5,10)$$1$
$3$$6$$(1,9,12,11,8,10)(2,4,7,3,6,5)$$0$
$3$$6$$(1,10,8,11,12,9)(2,5,6,3,7,4)$$0$
$3$$6$$(1,3,12,5,8,4)(2,10,7,9,6,11)$$0$
$3$$6$$(1,4,8,5,12,3)(2,11,6,9,7,10)$$0$

The blue line marks the conjugacy class containing complex conjugation.