Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(2496\)\(\medspace = 2^{6} \cdot 3 \cdot 13 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 4.0.7488.3 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{-3}, \sqrt{13})\) |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 20 + 50\cdot 61 + 17\cdot 61^{2} + 46\cdot 61^{3} + 29\cdot 61^{4} +O(61^{5})\) |
$r_{ 2 }$ | $=$ | \( 23 + 53\cdot 61 + 30\cdot 61^{2} + 21\cdot 61^{3} + 59\cdot 61^{4} +O(61^{5})\) |
$r_{ 3 }$ | $=$ | \( 38 + 7\cdot 61 + 30\cdot 61^{2} + 39\cdot 61^{3} + 61^{4} +O(61^{5})\) |
$r_{ 4 }$ | $=$ | \( 41 + 10\cdot 61 + 43\cdot 61^{2} + 14\cdot 61^{3} + 31\cdot 61^{4} +O(61^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ |
$2$ | $2$ | $(1,4)$ | $0$ |
$2$ | $4$ | $(1,3,4,2)$ | $0$ |