Properties

Label 2.2496.4t3.i
Dimension $2$
Group $D_{4}$
Conductor $2496$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:\(2496\)\(\medspace = 2^{6} \cdot 3 \cdot 13 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.0.7488.3
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-3}, \sqrt{13})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 20 + 50\cdot 61 + 17\cdot 61^{2} + 46\cdot 61^{3} + 29\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 23 + 53\cdot 61 + 30\cdot 61^{2} + 21\cdot 61^{3} + 59\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 38 + 7\cdot 61 + 30\cdot 61^{2} + 39\cdot 61^{3} + 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 41 + 10\cdot 61 + 43\cdot 61^{2} + 14\cdot 61^{3} + 31\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.