Properties

Label 2.2912.6t3.b.a
Dimension $2$
Group $D_{6}$
Conductor $2912$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(2912\)\(\medspace = 2^{5} \cdot 7 \cdot 13 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.16959488.2
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Determinant: 1.728.2t1.b.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.728.1

Defining polynomial

$f(x)$$=$ \( x^{6} + 10x^{4} + 25x^{2} + 32 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 8.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \( x^{2} + 16x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 1 + 12\cdot 17 + 3\cdot 17^{2} + 4\cdot 17^{3} + 11\cdot 17^{4} + 15\cdot 17^{5} + 3\cdot 17^{6} + 8\cdot 17^{7} +O(17^{8})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 4 a + 7 + \left(16 a + 8\right)\cdot 17 + \left(11 a + 12\right)\cdot 17^{2} + \left(10 a + 2\right)\cdot 17^{3} + \left(a + 10\right)\cdot 17^{4} + 8\cdot 17^{5} + \left(5 a + 16\right)\cdot 17^{6} + 14\cdot 17^{7} +O(17^{8})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 4 a + 6 + \left(16 a + 13\right)\cdot 17 + \left(11 a + 8\right)\cdot 17^{2} + \left(10 a + 15\right)\cdot 17^{3} + \left(a + 15\right)\cdot 17^{4} + 9\cdot 17^{5} + \left(5 a + 12\right)\cdot 17^{6} + 6\cdot 17^{7} +O(17^{8})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 16 + 4\cdot 17 + 13\cdot 17^{2} + 12\cdot 17^{3} + 5\cdot 17^{4} + 17^{5} + 13\cdot 17^{6} + 8\cdot 17^{7} +O(17^{8})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 13 a + 10 + 8\cdot 17 + \left(5 a + 4\right)\cdot 17^{2} + \left(6 a + 14\right)\cdot 17^{3} + \left(15 a + 6\right)\cdot 17^{4} + \left(16 a + 8\right)\cdot 17^{5} + 11 a\cdot 17^{6} + \left(16 a + 2\right)\cdot 17^{7} +O(17^{8})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 13 a + 11 + 3\cdot 17 + \left(5 a + 8\right)\cdot 17^{2} + \left(6 a + 1\right)\cdot 17^{3} + \left(15 a + 1\right)\cdot 17^{4} + \left(16 a + 7\right)\cdot 17^{5} + \left(11 a + 4\right)\cdot 17^{6} + \left(16 a + 10\right)\cdot 17^{7} +O(17^{8})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(3,5)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,4)(2,5)(3,6)$$-2$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$3$$2$$(1,3)(4,6)$$0$
$2$$3$$(1,5,3)(2,6,4)$$-1$
$2$$6$$(1,6,5,4,3,2)$$1$