Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(2912\)\(\medspace = 2^{5} \cdot 7 \cdot 13 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.0.16959488.2 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Determinant: | 1.728.2t1.b.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.728.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{6} + 10x^{4} + 25x^{2} + 32 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \( x^{2} + 16x + 3 \)
Roots:
$r_{ 1 }$ | $=$ | \( 1 + 12\cdot 17 + 3\cdot 17^{2} + 4\cdot 17^{3} + 11\cdot 17^{4} + 15\cdot 17^{5} + 3\cdot 17^{6} + 8\cdot 17^{7} +O(17^{8})\) |
$r_{ 2 }$ | $=$ | \( 4 a + 7 + \left(16 a + 8\right)\cdot 17 + \left(11 a + 12\right)\cdot 17^{2} + \left(10 a + 2\right)\cdot 17^{3} + \left(a + 10\right)\cdot 17^{4} + 8\cdot 17^{5} + \left(5 a + 16\right)\cdot 17^{6} + 14\cdot 17^{7} +O(17^{8})\) |
$r_{ 3 }$ | $=$ | \( 4 a + 6 + \left(16 a + 13\right)\cdot 17 + \left(11 a + 8\right)\cdot 17^{2} + \left(10 a + 15\right)\cdot 17^{3} + \left(a + 15\right)\cdot 17^{4} + 9\cdot 17^{5} + \left(5 a + 12\right)\cdot 17^{6} + 6\cdot 17^{7} +O(17^{8})\) |
$r_{ 4 }$ | $=$ | \( 16 + 4\cdot 17 + 13\cdot 17^{2} + 12\cdot 17^{3} + 5\cdot 17^{4} + 17^{5} + 13\cdot 17^{6} + 8\cdot 17^{7} +O(17^{8})\) |
$r_{ 5 }$ | $=$ | \( 13 a + 10 + 8\cdot 17 + \left(5 a + 4\right)\cdot 17^{2} + \left(6 a + 14\right)\cdot 17^{3} + \left(15 a + 6\right)\cdot 17^{4} + \left(16 a + 8\right)\cdot 17^{5} + 11 a\cdot 17^{6} + \left(16 a + 2\right)\cdot 17^{7} +O(17^{8})\) |
$r_{ 6 }$ | $=$ | \( 13 a + 11 + 3\cdot 17 + \left(5 a + 8\right)\cdot 17^{2} + \left(6 a + 1\right)\cdot 17^{3} + \left(15 a + 1\right)\cdot 17^{4} + \left(16 a + 7\right)\cdot 17^{5} + \left(11 a + 4\right)\cdot 17^{6} + \left(16 a + 10\right)\cdot 17^{7} +O(17^{8})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-2$ | |
$3$ | $2$ | $(1,2)(3,6)(4,5)$ | $0$ | ✓ |
$3$ | $2$ | $(1,3)(4,6)$ | $0$ | |
$2$ | $3$ | $(1,5,3)(2,6,4)$ | $-1$ | |
$2$ | $6$ | $(1,6,5,4,3,2)$ | $1$ |