Properties

Label 2.2312.8t8.a.b
Dimension $2$
Group $QD_{16}$
Conductor $2312$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $QD_{16}$
Conductor: \(2312\)\(\medspace = 2^{3} \cdot 17^{2} \)
Artin stem field: Galois closure of 8.2.210093400576.2
Galois orbit size: $2$
Smallest permutation container: $QD_{16}$
Parity: odd
Determinant: 1.136.2t1.b.a
Projective image: $D_4$
Projective stem field: Galois closure of 4.2.39304.1

Defining polynomial

$f(x)$$=$ \( x^{8} - 17x^{6} + 17x^{4} + 17x^{2} - 34 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 179 }$ to precision 10.

Roots:
$r_{ 1 }$ $=$ \( 8 + 93\cdot 179 + 91\cdot 179^{2} + 158\cdot 179^{3} + 10\cdot 179^{4} + 129\cdot 179^{5} + 13\cdot 179^{6} + 17\cdot 179^{7} + 7\cdot 179^{8} + 153\cdot 179^{9} +O(179^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 27 + 18\cdot 179 + 8\cdot 179^{2} + 129\cdot 179^{4} + 36\cdot 179^{5} + 114\cdot 179^{6} + 167\cdot 179^{7} + 92\cdot 179^{8} + 117\cdot 179^{9} +O(179^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 36 + 156\cdot 179 + 146\cdot 179^{2} + 109\cdot 179^{3} + 152\cdot 179^{4} + 131\cdot 179^{5} + 176\cdot 179^{6} + 24\cdot 179^{7} + 52\cdot 179^{8} + 57\cdot 179^{9} +O(179^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 75 + 165\cdot 179 + 146\cdot 179^{2} + 91\cdot 179^{3} + 129\cdot 179^{4} + 11\cdot 179^{5} + 35\cdot 179^{6} + 150\cdot 179^{7} + 110\cdot 179^{8} + 10\cdot 179^{9} +O(179^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 104 + 13\cdot 179 + 32\cdot 179^{2} + 87\cdot 179^{3} + 49\cdot 179^{4} + 167\cdot 179^{5} + 143\cdot 179^{6} + 28\cdot 179^{7} + 68\cdot 179^{8} + 168\cdot 179^{9} +O(179^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 143 + 22\cdot 179 + 32\cdot 179^{2} + 69\cdot 179^{3} + 26\cdot 179^{4} + 47\cdot 179^{5} + 2\cdot 179^{6} + 154\cdot 179^{7} + 126\cdot 179^{8} + 121\cdot 179^{9} +O(179^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 152 + 160\cdot 179 + 170\cdot 179^{2} + 178\cdot 179^{3} + 49\cdot 179^{4} + 142\cdot 179^{5} + 64\cdot 179^{6} + 11\cdot 179^{7} + 86\cdot 179^{8} + 61\cdot 179^{9} +O(179^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 171 + 85\cdot 179 + 87\cdot 179^{2} + 20\cdot 179^{3} + 168\cdot 179^{4} + 49\cdot 179^{5} + 165\cdot 179^{6} + 161\cdot 179^{7} + 171\cdot 179^{8} + 25\cdot 179^{9} +O(179^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,2,4,8,6,7,5)$
$(1,7,8,2)(3,5,6,4)$
$(2,7)(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(2,7)(3,4)(5,6)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
$4$$4$$(1,4,8,5)(2,3,7,6)$$0$
$2$$8$$(1,3,2,4,8,6,7,5)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,6,2,5,8,3,7,4)$$-\zeta_{8}^{3} - \zeta_{8}$