Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(152\)\(\medspace = 2^{3} \cdot 19 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 6.2.184832.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.1.152.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$:
\( x^{2} + 29x + 3 \)
Roots:
$r_{ 1 }$ | $=$ | \( 18 a + 19 + \left(29 a + 4\right)\cdot 31 + \left(30 a + 25\right)\cdot 31^{2} + \left(24 a + 4\right)\cdot 31^{3} + \left(30 a + 27\right)\cdot 31^{4} +O(31^{5})\) |
$r_{ 2 }$ | $=$ | \( 9 a + 19 + \left(3 a + 28\right)\cdot 31 + \left(4 a + 26\right)\cdot 31^{2} + \left(25 a + 2\right)\cdot 31^{3} + \left(18 a + 1\right)\cdot 31^{4} +O(31^{5})\) |
$r_{ 3 }$ | $=$ | \( 13 a + 24 + \left(a + 14\right)\cdot 31 + 26\cdot 31^{2} + \left(6 a + 23\right)\cdot 31^{3} + 31^{4} +O(31^{5})\) |
$r_{ 4 }$ | $=$ | \( 14 + 3\cdot 31 + 6\cdot 31^{2} + 23\cdot 31^{3} + 8\cdot 31^{4} +O(31^{5})\) |
$r_{ 5 }$ | $=$ | \( 11 + 15\cdot 31 + 7\cdot 31^{2} + 20\cdot 31^{3} + 9\cdot 31^{4} +O(31^{5})\) |
$r_{ 6 }$ | $=$ | \( 22 a + 6 + \left(27 a + 26\right)\cdot 31 + 26 a\cdot 31^{2} + \left(5 a + 18\right)\cdot 31^{3} + \left(12 a + 13\right)\cdot 31^{4} +O(31^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,2)(3,6)(4,5)$ | $-2$ |
$3$ | $2$ | $(1,3)(2,6)$ | $0$ |
$3$ | $2$ | $(1,6)(2,3)(4,5)$ | $0$ |
$2$ | $3$ | $(1,5,3)(2,4,6)$ | $-1$ |
$2$ | $6$ | $(1,4,3,2,5,6)$ | $1$ |