Properties

Label 2.152.6t3.a
Dimension $2$
Group $D_{6}$
Conductor $152$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:\(152\)\(\medspace = 2^{3} \cdot 19 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.2.184832.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Projective image: $S_3$
Projective field: Galois closure of 3.1.152.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \( x^{2} + 29x + 3 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 18 a + 19 + \left(29 a + 4\right)\cdot 31 + \left(30 a + 25\right)\cdot 31^{2} + \left(24 a + 4\right)\cdot 31^{3} + \left(30 a + 27\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 9 a + 19 + \left(3 a + 28\right)\cdot 31 + \left(4 a + 26\right)\cdot 31^{2} + \left(25 a + 2\right)\cdot 31^{3} + \left(18 a + 1\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 13 a + 24 + \left(a + 14\right)\cdot 31 + 26\cdot 31^{2} + \left(6 a + 23\right)\cdot 31^{3} + 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 14 + 3\cdot 31 + 6\cdot 31^{2} + 23\cdot 31^{3} + 8\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 11 + 15\cdot 31 + 7\cdot 31^{2} + 20\cdot 31^{3} + 9\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 22 a + 6 + \left(27 a + 26\right)\cdot 31 + 26 a\cdot 31^{2} + \left(5 a + 18\right)\cdot 31^{3} + \left(12 a + 13\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(3,5)(4,6)$
$(1,2)(3,6)(4,5)$
$(1,3)(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,6)(4,5)$ $-2$
$3$ $2$ $(1,3)(2,6)$ $0$
$3$ $2$ $(1,6)(2,3)(4,5)$ $0$
$2$ $3$ $(1,5,3)(2,4,6)$ $-1$
$2$ $6$ $(1,4,3,2,5,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.