Properties

Label 2.3528.24t22.c.b
Dimension $2$
Group $\textrm{GL(2,3)}$
Conductor $3528$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $\textrm{GL(2,3)}$
Conductor: \(3528\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Artin stem field: Galois closure of 8.2.5377010688.3
Galois orbit size: $2$
Smallest permutation container: 24T22
Parity: odd
Determinant: 1.3.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.21168.2

Defining polynomial

$f(x)$$=$ \( x^{8} - 2x^{7} - 2x^{6} - 2x^{5} + 4x^{4} + 22x^{3} + 10x^{2} - 26x - 17 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{2} + 21x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 21 a + 18 + \left(15 a + 10\right)\cdot 23 + \left(10 a + 2\right)\cdot 23^{2} + \left(6 a + 13\right)\cdot 23^{3} + \left(8 a + 15\right)\cdot 23^{4} + \left(a + 4\right)\cdot 23^{5} + \left(3 a + 15\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 20 + 16\cdot 23 + 9\cdot 23^{2} + 6\cdot 23^{3} + 19\cdot 23^{4} + 23^{5} + 3\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 8 a + 17 + \left(10 a + 5\right)\cdot 23 + \left(4 a + 17\right)\cdot 23^{2} + \left(17 a + 20\right)\cdot 23^{3} + \left(11 a + 11\right)\cdot 23^{4} + 10 a\cdot 23^{5} + \left(12 a + 3\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 16 a + 5 + \left(14 a + 16\right)\cdot 23 + \left(11 a + 22\right)\cdot 23^{2} + \left(16 a + 5\right)\cdot 23^{3} + 19\cdot 23^{4} + \left(6 a + 11\right)\cdot 23^{5} + \left(3 a + 10\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 2 a + 14 + \left(7 a + 21\right)\cdot 23 + \left(12 a + 7\right)\cdot 23^{2} + \left(16 a + 15\right)\cdot 23^{3} + \left(14 a + 2\right)\cdot 23^{4} + \left(21 a + 22\right)\cdot 23^{5} + \left(19 a + 19\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 15 a + 10 + \left(12 a + 18\right)\cdot 23 + \left(18 a + 15\right)\cdot 23^{2} + \left(5 a + 4\right)\cdot 23^{3} + \left(11 a + 18\right)\cdot 23^{4} + \left(12 a + 9\right)\cdot 23^{5} + \left(10 a + 17\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 19 + 18\cdot 23 + 7\cdot 23^{2} + 21\cdot 23^{3} + 18\cdot 23^{5} + 11\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 7 a + 14 + \left(8 a + 6\right)\cdot 23 + \left(11 a + 8\right)\cdot 23^{2} + \left(6 a + 4\right)\cdot 23^{3} + \left(22 a + 4\right)\cdot 23^{4} + 16 a\cdot 23^{5} + \left(19 a + 11\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,8,3)(2,4,7,5)$
$(1,7,8,2)(3,5,6,4)$
$(1,7)(2,8)(4,5)$
$(1,5,2)(4,7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$12$$2$$(1,7)(2,8)(4,5)$$0$
$8$$3$$(1,6,7)(2,8,3)$$-1$
$6$$4$$(1,6,8,3)(2,4,7,5)$$0$
$8$$6$$(1,2,6,8,7,3)(4,5)$$1$
$6$$8$$(1,6,2,5,8,3,7,4)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,3,2,4,8,6,7,5)$$-\zeta_{8}^{3} - \zeta_{8}$

The blue line marks the conjugacy class containing complex conjugation.