Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(208\)\(\medspace = 2^{4} \cdot 13 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 4.0.832.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(i, \sqrt{13})\) |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 36 + 36\cdot 53 + 24\cdot 53^{2} + 40\cdot 53^{3} + 44\cdot 53^{4} +O(53^{5})\) |
$r_{ 2 }$ | $=$ | \( 39 + 53 + 21\cdot 53^{2} + 39\cdot 53^{4} +O(53^{5})\) |
$r_{ 3 }$ | $=$ | \( 41 + 25\cdot 53 + 18\cdot 53^{2} + 8\cdot 53^{3} + 11\cdot 53^{4} +O(53^{5})\) |
$r_{ 4 }$ | $=$ | \( 45 + 41\cdot 53 + 41\cdot 53^{2} + 3\cdot 53^{3} + 11\cdot 53^{4} +O(53^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,3)(2,4)$ | $-2$ |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ |
$2$ | $2$ | $(1,3)$ | $0$ |
$2$ | $4$ | $(1,4,3,2)$ | $0$ |