Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(304\)\(\medspace = 2^{4} \cdot 19 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.0.92416.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Determinant: | 1.19.2t1.a.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.76.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{6} - 2x^{5} + 2x^{4} - 2x^{3} + 2 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{2} + 12x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 7 a + 4 + 7\cdot 13 + \left(11 a + 3\right)\cdot 13^{2} + \left(11 a + 1\right)\cdot 13^{3} + \left(7 a + 6\right)\cdot 13^{4} +O(13^{5})\) |
$r_{ 2 }$ | $=$ | \( 4 a + 3 + \left(a + 7\right)\cdot 13 + 7\cdot 13^{2} + \left(2 a + 3\right)\cdot 13^{3} + \left(11 a + 12\right)\cdot 13^{4} +O(13^{5})\) |
$r_{ 3 }$ | $=$ | \( 6 a + 11 + 12 a\cdot 13 + \left(a + 1\right)\cdot 13^{2} + \left(a + 2\right)\cdot 13^{3} + \left(5 a + 2\right)\cdot 13^{4} +O(13^{5})\) |
$r_{ 4 }$ | $=$ | \( 9 + 6\cdot 13 + 4\cdot 13^{3} + 10\cdot 13^{4} +O(13^{5})\) |
$r_{ 5 }$ | $=$ | \( 9 a + 7 + \left(11 a + 4\right)\cdot 13 + \left(12 a + 6\right)\cdot 13^{2} + \left(10 a + 5\right)\cdot 13^{3} + \left(a + 8\right)\cdot 13^{4} +O(13^{5})\) |
$r_{ 6 }$ | $=$ | \( 7 + 12\cdot 13 + 6\cdot 13^{2} + 9\cdot 13^{3} + 12\cdot 13^{4} +O(13^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,5)(2,3)(4,6)$ | $-2$ |
$3$ | $2$ | $(2,4)(3,6)$ | $0$ |
$3$ | $2$ | $(1,2)(3,5)(4,6)$ | $0$ |
$2$ | $3$ | $(1,6,3)(2,5,4)$ | $-1$ |
$2$ | $6$ | $(1,2,6,5,3,4)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.