Properties

Label 2.304.6t3.b.a
Dimension $2$
Group $D_{6}$
Conductor $304$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(304\)\(\medspace = 2^{4} \cdot 19 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.92416.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Determinant: 1.19.2t1.a.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.76.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} + 2x^{4} - 2x^{3} + 2 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{2} + 12x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 7 a + 4 + 7\cdot 13 + \left(11 a + 3\right)\cdot 13^{2} + \left(11 a + 1\right)\cdot 13^{3} + \left(7 a + 6\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 4 a + 3 + \left(a + 7\right)\cdot 13 + 7\cdot 13^{2} + \left(2 a + 3\right)\cdot 13^{3} + \left(11 a + 12\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 6 a + 11 + 12 a\cdot 13 + \left(a + 1\right)\cdot 13^{2} + \left(a + 2\right)\cdot 13^{3} + \left(5 a + 2\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 9 + 6\cdot 13 + 4\cdot 13^{3} + 10\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 9 a + 7 + \left(11 a + 4\right)\cdot 13 + \left(12 a + 6\right)\cdot 13^{2} + \left(10 a + 5\right)\cdot 13^{3} + \left(a + 8\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 7 + 12\cdot 13 + 6\cdot 13^{2} + 9\cdot 13^{3} + 12\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6,5,3,4)$
$(2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,6)$$-2$
$3$$2$$(2,4)(3,6)$$0$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$2$$3$$(1,6,3)(2,5,4)$$-1$
$2$$6$$(1,2,6,5,3,4)$$1$

The blue line marks the conjugacy class containing complex conjugation.