Basic invariants
Dimension: | $2$ |
Group: | $C_6\times S_3$ |
Conductor: | \(3104\)\(\medspace = 2^{5} \cdot 97 \) |
Artin number field: | Galois closure of 12.0.1485274869661696.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6\times S_3$ |
Parity: | odd |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.1.75272.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$:
\( x^{6} + 10x^{3} + 11x^{2} + 11x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 8 a^{5} + 8 a^{4} + 10 a^{3} + a^{2} + 11 a + \left(a^{4} + 9 a^{3} + 12 a^{2} + 2 a + 10\right)\cdot 13 + \left(a^{5} + 5 a^{4} + 5 a^{3} + 12 a^{2} + 12 a + 8\right)\cdot 13^{2} + \left(12 a^{5} + 3 a^{4} + 3 a^{3} + 8 a^{2} + 7 a + 7\right)\cdot 13^{3} + \left(10 a^{5} + 9 a^{4} + 7 a^{3} + 10 a^{2} + 6 a + 11\right)\cdot 13^{4} + \left(6 a^{5} + 5 a^{4} + 12 a^{2} + 9 a + 9\right)\cdot 13^{5} + \left(9 a^{4} + 10 a^{3} + 2 a^{2} + 5 a\right)\cdot 13^{6} + \left(5 a^{5} + 5 a^{4} + 8 a^{3} + 11 a^{2} + 5 a + 2\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 2 }$ | $=$ | \( 10 a^{5} + 4 a^{4} + 12 a^{3} + 10 a^{2} + 10 a + 12 + \left(5 a^{5} + 4 a^{4} + 2 a^{3} + 5 a^{2} + 12 a + 5\right)\cdot 13 + \left(6 a^{5} + 3 a^{4} + 11 a^{3} + 7\right)\cdot 13^{2} + \left(7 a^{4} + 9 a^{2} + 4 a + 3\right)\cdot 13^{3} + \left(9 a^{5} + 6 a^{4} + 5 a^{3} + 2 a^{2} + 12 a\right)\cdot 13^{4} + \left(5 a^{5} + 10 a^{4} + 3 a^{3} + 12 a^{2} + 9 a + 1\right)\cdot 13^{5} + \left(9 a^{5} + 8 a^{4} + 7 a^{3} + 11 a^{2} + 4 a + 1\right)\cdot 13^{6} + \left(7 a^{5} + 8 a^{4} + 3 a^{3} + 7 a^{2} + 11 a + 7\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 3 }$ | $=$ | \( 6 a^{5} + 2 a^{4} + 4 a^{3} + 10 a^{2} + 2 a + 3 + \left(a^{5} + 6 a^{4} + 7 a^{3} + 5 a^{2} + 11 a + 6\right)\cdot 13 + \left(3 a^{5} + 3 a^{4} + 3 a^{3} + 4 a^{2} + 12 a + 2\right)\cdot 13^{2} + \left(6 a^{5} + 12 a^{4} + 4 a^{3} + 10 a^{2} + 3 a + 8\right)\cdot 13^{3} + \left(4 a^{5} + 2 a^{4} + 11 a^{3} + 8 a + 6\right)\cdot 13^{4} + \left(2 a^{5} + 4 a^{4} + 6 a^{3} + 12 a^{2} + 6 a + 4\right)\cdot 13^{5} + \left(4 a^{5} + a^{4} + 6 a^{3} + 9 a^{2} + 11\right)\cdot 13^{6} + \left(12 a^{5} + 5 a^{4} + 2 a^{3} + 4 a^{2} + 7 a + 6\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 4 }$ | $=$ | \( 12 a^{5} + 12 a^{4} + 2 a^{3} + 8 a^{2} + 10 a + \left(8 a^{5} + 3 a^{4} + 5 a^{3} + 12 a^{2} + 8 a + 2\right)\cdot 13 + \left(9 a^{5} + 10 a^{4} + 3 a^{3} + 3 a^{2} + 4 a + 10\right)\cdot 13^{2} + \left(11 a^{5} + 7 a^{4} + 9 a^{3} + 8 a^{2} + 11\right)\cdot 13^{3} + \left(12 a^{5} + 8 a^{4} + 7 a^{3} + 3 a + 11\right)\cdot 13^{4} + \left(11 a^{5} + 3 a^{4} + a^{3} + 3 a^{2} + 11 a + 3\right)\cdot 13^{5} + \left(3 a^{4} + 8 a^{3} + 5 a^{2} + 12 a + 10\right)\cdot 13^{6} + \left(3 a^{5} + 4 a^{4} + 5 a^{3} + 2 a^{2} + 12 a\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 5 }$ | $=$ | \( a^{5} + 10 a^{4} + 4 a^{3} + 4 a^{2} + 9 a + 5 + \left(8 a^{4} + 6 a^{3} + 4 a^{2} + 4 a + 3\right)\cdot 13 + \left(12 a^{4} + 8 a^{3} + 2 a^{2} + 12 a + 3\right)\cdot 13^{2} + \left(2 a^{5} + 7 a^{4} + 8 a^{3} + 4 a^{2} + 7 a + 5\right)\cdot 13^{3} + \left(2 a^{5} + 10 a^{4} + 11 a^{3} + 10 a^{2} + 8 a + 6\right)\cdot 13^{4} + \left(11 a^{5} + 3 a^{4} + 4 a^{3} + 9 a^{2} + 4 a + 7\right)\cdot 13^{5} + \left(6 a^{5} + 10 a^{4} + 6 a^{3} + 3 a^{2} + 6 a + 5\right)\cdot 13^{6} + \left(3 a^{5} + 7 a^{2} + 12\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 6 }$ | $=$ | \( a^{5} + 12 a^{4} + 5 a^{3} + 8 a^{2} + 7 a + 3 + \left(6 a^{5} + 6 a^{4} + 7 a^{3} + 6 a^{2} + 12 a + 11\right)\cdot 13 + \left(a^{5} + 10 a^{4} + 4 a^{3} + 6 a^{2} + 12 a\right)\cdot 13^{2} + \left(11 a^{4} + 4 a^{3} + 4 a^{2} + 5 a + 1\right)\cdot 13^{3} + \left(6 a^{4} + 5 a^{3} + 4 a^{2} + 3 a + 8\right)\cdot 13^{4} + \left(7 a^{5} + 3 a^{4} + a^{3} + 11 a^{2} + 12 a + 12\right)\cdot 13^{5} + \left(9 a^{5} + 10 a^{4} + 6 a^{3} + 5 a^{2} + 10 a + 6\right)\cdot 13^{6} + \left(2 a^{5} + 7 a^{4} + 7 a^{3} + 10 a^{2} + 4 a + 2\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 7 }$ | $=$ | \( a^{5} + 5 a^{4} + 5 a^{3} + 4 a^{2} + 4 a + 8 + \left(7 a^{5} + 4 a^{4} + a^{3} + a^{2} + 8 a + 8\right)\cdot 13 + \left(a^{5} + 9 a^{4} + 9 a^{3} + 6 a^{2} + 8 a + 4\right)\cdot 13^{2} + \left(a^{5} + 3 a^{4} + 3 a^{3} + 5 a^{2} + 8\right)\cdot 13^{3} + \left(4 a^{5} + 12 a^{4} + 7 a^{3} + 2 a^{2} + 11 a + 3\right)\cdot 13^{4} + \left(4 a^{5} + 10 a^{4} + 9 a^{3} + a^{2} + 2 a + 7\right)\cdot 13^{5} + \left(8 a^{5} + 3 a^{4} + 11 a^{3} + 2 a^{2} + 10 a + 11\right)\cdot 13^{6} + \left(9 a^{5} + 8 a^{4} + 10 a^{3} + 5 a^{2} + 6 a + 10\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 8 }$ | $=$ | \( 8 a^{5} + 2 a^{4} + 6 a^{3} + 6 a^{2} + 7 a + 1 + \left(7 a^{5} + 10 a^{4} + 10 a^{2} + 9 a + 10\right)\cdot 13 + \left(11 a^{5} + 12 a^{4} + a^{2} + 9 a\right)\cdot 13^{2} + \left(2 a^{5} + 4 a^{4} + 12 a^{3} + 2 a^{2} + 10 a + 6\right)\cdot 13^{3} + \left(12 a^{3} + 9 a^{2} + 2 a + 4\right)\cdot 13^{4} + \left(4 a^{5} + 8 a^{4} + 12 a^{3} + 9 a^{2}\right)\cdot 13^{5} + \left(10 a^{5} + 9 a^{4} + 9 a^{3} + a^{2} + 11 a + 7\right)\cdot 13^{6} + \left(4 a^{5} + 10 a^{4} + 11 a^{3} + 2 a^{2} + 10 a + 12\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 9 }$ | $=$ | \( 8 a^{5} + 5 a^{4} + a^{3} + 12 a^{2} + 4 a + 11 + \left(3 a^{5} + 9 a^{4} + 3 a^{3} + 4 a^{2} + 6 a + 6\right)\cdot 13 + \left(4 a^{4} + 4 a^{2} + 8 a + 1\right)\cdot 13^{2} + \left(12 a^{5} + 11 a^{4} + 3 a^{2} + 9 a + 5\right)\cdot 13^{3} + \left(5 a^{5} + 4 a^{4} + 8 a + 3\right)\cdot 13^{4} + \left(7 a^{5} + 10 a^{4} + 4 a^{3} + 12 a + 6\right)\cdot 13^{5} + \left(8 a^{5} + 6 a^{4} + 9 a^{3} + 5 a^{2} + 5 a + 12\right)\cdot 13^{6} + \left(8 a^{5} + 8 a^{4} + 8 a^{3} + a^{2} + 9 a + 9\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 10 }$ | $=$ | \( 8 a^{5} + a^{4} + a^{3} + 6 a^{2} + 6 a + 12 + \left(11 a^{5} + 5 a^{4} + 7 a^{3} + 12 a^{2} + 3 a + 7\right)\cdot 13 + \left(7 a^{5} + 4 a^{4} + 7 a^{3} + 10 a^{2} + 2 a + 3\right)\cdot 13^{2} + \left(5 a^{5} + 8 a^{4} + 12 a^{3} + 5 a^{2} + 10 a + 4\right)\cdot 13^{3} + \left(6 a^{5} + 2 a^{4} + a^{3} + 12 a^{2} + 3 a + 12\right)\cdot 13^{4} + \left(7 a^{5} + 2 a^{4} + 10 a^{3} + a^{2} + 11 a + 9\right)\cdot 13^{5} + \left(5 a^{5} + 9 a^{4} + 10 a^{3} + 5 a^{2} + 3 a + 9\right)\cdot 13^{6} + \left(2 a^{5} + a^{4} + 6 a^{3} + 7 a^{2} + 1\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 11 }$ | $=$ | \( 11 a^{5} + 7 a^{4} + 8 a^{3} + 11 a^{2} + 11 a + 8 + \left(2 a^{4} + 9 a^{3} + 9 a + 11\right)\cdot 13 + \left(6 a^{5} + 3 a^{4} + 4 a^{3} + 2 a^{2}\right)\cdot 13^{2} + \left(a^{5} + 5 a^{4} + 11 a^{3} + a^{2} + 12 a + 9\right)\cdot 13^{3} + \left(a^{4} + 9 a^{3} + 5 a^{2} + 2 a + 8\right)\cdot 13^{4} + \left(10 a^{5} + 4 a^{4} + 6 a^{2} + 8 a + 8\right)\cdot 13^{5} + \left(12 a^{5} + 2 a^{4} + 11 a^{3} + 8 a^{2} + 8 a + 11\right)\cdot 13^{6} + \left(a^{5} + 12 a^{4} + 3 a^{3} + 8 a^{2} + 11 a + 11\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 12 }$ | $=$ | \( 4 a^{5} + 10 a^{4} + 7 a^{3} + 11 a^{2} + 10 a + 2 + \left(11 a^{5} + a^{4} + 4 a^{3} + 7\right)\cdot 13 + \left(2 a^{5} + 11 a^{4} + 6 a^{3} + 9 a^{2} + 5 a + 7\right)\cdot 13^{2} + \left(9 a^{5} + 6 a^{4} + 7 a^{3} + a^{2} + 4 a + 7\right)\cdot 13^{3} + \left(8 a^{5} + 11 a^{4} + 10 a^{3} + 6 a^{2} + 6 a\right)\cdot 13^{4} + \left(12 a^{5} + 10 a^{4} + 8 a^{3} + 10 a^{2} + a + 6\right)\cdot 13^{5} + \left(2 a^{4} + 6 a^{3} + 2 a^{2} + 10 a + 2\right)\cdot 13^{6} + \left(3 a^{5} + 4 a^{4} + 7 a^{3} + 9 a^{2} + 9 a + 12\right)\cdot 13^{7} +O(13^{8})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 12 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 12 }$ | Character values | |
$c1$ | $c2$ | |||
$1$ | $1$ | $()$ | $2$ | $2$ |
$1$ | $2$ | $(1,4)(2,11)(3,12)(5,8)(6,9)(7,10)$ | $-2$ | $-2$ |
$3$ | $2$ | $(1,3)(2,6)(4,12)(5,10)(7,8)(9,11)$ | $0$ | $0$ |
$3$ | $2$ | $(1,12)(2,9)(3,4)(5,7)(6,11)(8,10)$ | $0$ | $0$ |
$1$ | $3$ | $(1,5,6)(2,3,10)(4,8,9)(7,11,12)$ | $-2 \zeta_{3} - 2$ | $2 \zeta_{3}$ |
$1$ | $3$ | $(1,6,5)(2,10,3)(4,9,8)(7,12,11)$ | $2 \zeta_{3}$ | $-2 \zeta_{3} - 2$ |
$2$ | $3$ | $(1,6,5)(4,9,8)$ | $\zeta_{3} + 1$ | $-\zeta_{3}$ |
$2$ | $3$ | $(1,5,6)(4,8,9)$ | $-\zeta_{3}$ | $\zeta_{3} + 1$ |
$2$ | $3$ | $(1,6,5)(2,3,10)(4,9,8)(7,11,12)$ | $-1$ | $-1$ |
$1$ | $6$ | $(1,9,5,4,6,8)(2,7,3,11,10,12)$ | $-2 \zeta_{3}$ | $2 \zeta_{3} + 2$ |
$1$ | $6$ | $(1,8,6,4,5,9)(2,12,10,11,3,7)$ | $2 \zeta_{3} + 2$ | $-2 \zeta_{3}$ |
$2$ | $6$ | $(1,8,6,4,5,9)(2,7,3,11,10,12)$ | $1$ | $1$ |
$2$ | $6$ | $(1,4)(2,12,10,11,3,7)(5,8)(6,9)$ | $\zeta_{3}$ | $-\zeta_{3} - 1$ |
$2$ | $6$ | $(1,4)(2,7,3,11,10,12)(5,8)(6,9)$ | $-\zeta_{3} - 1$ | $\zeta_{3}$ |
$3$ | $6$ | $(1,2,5,3,6,10)(4,11,8,12,9,7)$ | $0$ | $0$ |
$3$ | $6$ | $(1,10,6,3,5,2)(4,7,9,12,8,11)$ | $0$ | $0$ |
$3$ | $6$ | $(1,11,5,12,6,7)(2,8,3,9,10,4)$ | $0$ | $0$ |
$3$ | $6$ | $(1,7,6,12,5,11)(2,4,10,9,3,8)$ | $0$ | $0$ |