Properties

Label 2.3276.12t18.c
Dimension $2$
Group $C_6\times S_3$
Conductor $3276$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$C_6\times S_3$
Conductor:\(3276\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \)
Artin number field: Galois closure of 12.0.34605071442579456.2
Galois orbit size: $2$
Smallest permutation container: $C_6\times S_3$
Parity: odd
Projective image: $S_3$
Projective field: Galois closure of 3.1.2548.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{6} + x^{4} + 9x^{3} + 9x^{2} + x + 5 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 2 a^{5} + 16 a^{4} + 15 a^{3} + 10 a^{2} + 11 a + 14 + \left(15 a^{5} + 13 a^{4} + 3 a^{3} + 3 a^{2} + 13 a + 16\right)\cdot 23 + \left(20 a^{5} + 2 a^{4} + 3 a^{3} + 22 a^{2} + 19 a\right)\cdot 23^{2} + \left(6 a^{5} + 12 a^{4} + 4 a^{3} + 13 a^{2} + 3 a + 3\right)\cdot 23^{3} + \left(21 a^{5} + 15 a^{4} + 16 a^{3} + 8 a^{2} + 19 a + 12\right)\cdot 23^{4} + \left(20 a^{5} + 4 a^{4} + 16 a^{3} + 9 a^{2} + 3 a + 22\right)\cdot 23^{5} + \left(8 a^{5} + 18 a^{4} + 12 a^{3} + 5 a + 18\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 2 a^{5} + 16 a^{4} + 15 a^{3} + 10 a^{2} + 11 a + 7 + \left(15 a^{5} + 13 a^{4} + 3 a^{3} + 3 a^{2} + 13 a + 3\right)\cdot 23 + \left(20 a^{5} + 2 a^{4} + 3 a^{3} + 22 a^{2} + 19 a + 11\right)\cdot 23^{2} + \left(6 a^{5} + 12 a^{4} + 4 a^{3} + 13 a^{2} + 3 a + 4\right)\cdot 23^{3} + \left(21 a^{5} + 15 a^{4} + 16 a^{3} + 8 a^{2} + 19 a + 8\right)\cdot 23^{4} + \left(20 a^{5} + 4 a^{4} + 16 a^{3} + 9 a^{2} + 3 a + 15\right)\cdot 23^{5} + \left(8 a^{5} + 18 a^{4} + 12 a^{3} + 5 a + 14\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 5 a^{5} + 11 a^{4} + 12 a^{3} + 3 a^{2} + 22 a + 8 + \left(17 a^{5} + 17 a^{4} + 20 a^{3} + 15 a^{2} + a + 21\right)\cdot 23 + \left(6 a^{5} + 11 a^{4} + 11 a^{3} + 2 a^{2} + 2 a + 19\right)\cdot 23^{2} + \left(a^{5} + 6 a^{4} + 16 a^{2} + 8 a + 9\right)\cdot 23^{3} + \left(12 a^{5} + 6 a^{4} + 11 a^{3} + 9 a^{2} + 14 a + 21\right)\cdot 23^{4} + \left(18 a^{5} + 8 a^{4} + 3 a^{3} + 12 a^{2} + 20 a\right)\cdot 23^{5} + \left(a^{5} + 19 a^{4} + 18 a^{3} + 2 a^{2} + 16 a + 17\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 5 a^{5} + 11 a^{4} + 12 a^{3} + 3 a^{2} + 22 a + 15 + \left(17 a^{5} + 17 a^{4} + 20 a^{3} + 15 a^{2} + a + 11\right)\cdot 23 + \left(6 a^{5} + 11 a^{4} + 11 a^{3} + 2 a^{2} + 2 a + 9\right)\cdot 23^{2} + \left(a^{5} + 6 a^{4} + 16 a^{2} + 8 a + 8\right)\cdot 23^{3} + \left(12 a^{5} + 6 a^{4} + 11 a^{3} + 9 a^{2} + 14 a + 2\right)\cdot 23^{4} + \left(18 a^{5} + 8 a^{4} + 3 a^{3} + 12 a^{2} + 20 a + 8\right)\cdot 23^{5} + \left(a^{5} + 19 a^{4} + 18 a^{3} + 2 a^{2} + 16 a + 21\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 10 a^{5} + 4 a^{4} + 6 a^{2} + 21 a + 20 + \left(10 a^{5} + 4 a^{4} + 22 a^{3} + 12 a^{2} + 8 a + 19\right)\cdot 23 + \left(13 a^{5} + 14 a^{4} + 4 a^{3} + 16 a^{2} + 9 a + 19\right)\cdot 23^{2} + \left(3 a^{5} + 15 a^{4} + 20 a^{3} + 6 a^{2} + 6 a + 12\right)\cdot 23^{3} + \left(5 a^{5} + 2 a^{4} + 8 a^{3} + 2 a^{2} + 13 a + 19\right)\cdot 23^{4} + \left(19 a^{5} + 11 a^{4} + 19 a^{3} + 7 a^{2} + 19 a + 20\right)\cdot 23^{5} + \left(19 a^{5} + 22 a^{4} + 16 a^{3} + 8 a^{2} + 7 a + 17\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 10 a^{5} + 4 a^{4} + 6 a^{2} + 21 a + 4 + \left(10 a^{5} + 4 a^{4} + 22 a^{3} + 12 a^{2} + 8 a + 10\right)\cdot 23 + \left(13 a^{5} + 14 a^{4} + 4 a^{3} + 16 a^{2} + 9 a + 9\right)\cdot 23^{2} + \left(3 a^{5} + 15 a^{4} + 20 a^{3} + 6 a^{2} + 6 a + 11\right)\cdot 23^{3} + \left(5 a^{5} + 2 a^{4} + 8 a^{3} + 2 a^{2} + 13 a\right)\cdot 23^{4} + \left(19 a^{5} + 11 a^{4} + 19 a^{3} + 7 a^{2} + 19 a + 5\right)\cdot 23^{5} + \left(19 a^{5} + 22 a^{4} + 16 a^{3} + 8 a^{2} + 7 a + 22\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 19 a^{5} + 9 a^{4} + 7 a^{3} + 11 a^{2} + 10 a + 17 + \left(14 a^{5} + 14 a^{4} + 4 a^{3} + 3 a^{2} + 8 a + 13\right)\cdot 23 + \left(10 a^{5} + 3 a^{4} + 14 a^{3} + 8 a^{2} + 7 a + 18\right)\cdot 23^{2} + \left(21 a^{5} + 15 a^{4} + 15 a^{3} + 12 a^{2} + 19 a + 8\right)\cdot 23^{3} + \left(4 a^{5} + 4 a^{4} + 5 a^{3} + 2 a^{2} + 7 a + 10\right)\cdot 23^{4} + \left(17 a^{5} + 22 a^{4} + 5 a^{3} + 11 a^{2} + 13 a + 7\right)\cdot 23^{5} + \left(11 a^{5} + 9 a^{3} + 5 a^{2} + 5 a + 3\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 19 a^{5} + 9 a^{4} + 7 a^{3} + 11 a^{2} + 10 a + 10 + \left(14 a^{5} + 14 a^{4} + 4 a^{3} + 3 a^{2} + 8 a\right)\cdot 23 + \left(10 a^{5} + 3 a^{4} + 14 a^{3} + 8 a^{2} + 7 a + 6\right)\cdot 23^{2} + \left(21 a^{5} + 15 a^{4} + 15 a^{3} + 12 a^{2} + 19 a + 10\right)\cdot 23^{3} + \left(4 a^{5} + 4 a^{4} + 5 a^{3} + 2 a^{2} + 7 a + 6\right)\cdot 23^{4} + \left(17 a^{5} + 22 a^{4} + 5 a^{3} + 11 a^{2} + 13 a\right)\cdot 23^{5} + \left(11 a^{5} + 9 a^{3} + 5 a^{2} + 5 a + 22\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 21 a^{5} + 4 a^{4} + 15 a^{3} + 17 a^{2} + 9 a + 14 + \left(13 a^{5} + 6 a^{4} + 7 a^{3} + 13 a^{2} + 7 a + 20\right)\cdot 23 + \left(5 a^{5} + 16 a^{3} + a\right)\cdot 23^{2} + \left(7 a^{5} + 18 a^{4} + 17 a^{3} + 4 a^{2} + 8 a + 9\right)\cdot 23^{3} + \left(7 a^{5} + 19 a^{4} + 14 a^{3} + 17 a^{2} + 9 a + 22\right)\cdot 23^{4} + \left(19 a^{5} + 3 a^{4} + 11 a^{3} + 10 a^{2} + 12 a + 2\right)\cdot 23^{5} + \left(18 a^{5} + 7 a^{4} + 11 a^{3} + 14 a^{2} + 12 a\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 10 }$ $=$ \( 21 a^{5} + 4 a^{4} + 15 a^{3} + 17 a^{2} + 9 a + 21 + \left(13 a^{5} + 6 a^{4} + 7 a^{3} + 13 a^{2} + 7 a + 10\right)\cdot 23 + \left(5 a^{5} + 16 a^{3} + a + 13\right)\cdot 23^{2} + \left(7 a^{5} + 18 a^{4} + 17 a^{3} + 4 a^{2} + 8 a + 7\right)\cdot 23^{3} + \left(7 a^{5} + 19 a^{4} + 14 a^{3} + 17 a^{2} + 9 a + 3\right)\cdot 23^{4} + \left(19 a^{5} + 3 a^{4} + 11 a^{3} + 10 a^{2} + 12 a + 10\right)\cdot 23^{5} + \left(18 a^{5} + 7 a^{4} + 11 a^{3} + 14 a^{2} + 12 a + 4\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 11 }$ $=$ \( 12 a^{5} + 2 a^{4} + 20 a^{3} + 22 a^{2} + 19 a + 21 + \left(20 a^{5} + 13 a^{4} + 10 a^{3} + 20 a^{2} + 5 a + 22\right)\cdot 23 + \left(11 a^{5} + 13 a^{4} + 18 a^{3} + 18 a^{2} + 6 a + 8\right)\cdot 23^{2} + \left(5 a^{5} + a^{4} + 10 a^{3} + 15 a^{2} + 2\right)\cdot 23^{3} + \left(18 a^{5} + 20 a^{4} + 12 a^{3} + 5 a^{2} + 5 a + 6\right)\cdot 23^{4} + \left(19 a^{5} + 18 a^{4} + 12 a^{3} + 18 a^{2} + 22 a + 14\right)\cdot 23^{5} + \left(7 a^{5} + 14 a^{2} + 20 a + 11\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 12 }$ $=$ \( 12 a^{5} + 2 a^{4} + 20 a^{3} + 22 a^{2} + 19 a + 14 + \left(20 a^{5} + 13 a^{4} + 10 a^{3} + 20 a^{2} + 5 a + 9\right)\cdot 23 + \left(11 a^{5} + 13 a^{4} + 18 a^{3} + 18 a^{2} + 6 a + 19\right)\cdot 23^{2} + \left(5 a^{5} + a^{4} + 10 a^{3} + 15 a^{2} + 3\right)\cdot 23^{3} + \left(18 a^{5} + 20 a^{4} + 12 a^{3} + 5 a^{2} + 5 a + 2\right)\cdot 23^{4} + \left(19 a^{5} + 18 a^{4} + 12 a^{3} + 18 a^{2} + 22 a + 7\right)\cdot 23^{5} + \left(7 a^{5} + 14 a^{2} + 20 a + 7\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)$
$(1,12,4,2,11,3)(5,10,8,6,9,7)$
$(5,9,8)(6,10,7)$
$(1,10)(2,9)(3,5)(4,6)(7,11)(8,12)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)$ $-2$ $-2$
$3$ $2$ $(1,10)(2,9)(3,5)(4,6)(7,11)(8,12)$ $0$ $0$
$3$ $2$ $(1,9)(2,10)(3,6)(4,5)(7,12)(8,11)$ $0$ $0$
$1$ $3$ $(1,4,11)(2,3,12)(5,8,9)(6,7,10)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$1$ $3$ $(1,11,4)(2,12,3)(5,9,8)(6,10,7)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$2$ $3$ $(5,9,8)(6,10,7)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(5,8,9)(6,7,10)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,4,11)(2,3,12)(5,9,8)(6,10,7)$ $-1$ $-1$
$1$ $6$ $(1,12,4,2,11,3)(5,10,8,6,9,7)$ $-2 \zeta_{3}$ $2 \zeta_{3} + 2$
$1$ $6$ $(1,3,11,2,4,12)(5,7,9,6,8,10)$ $2 \zeta_{3} + 2$ $-2 \zeta_{3}$
$2$ $6$ $(1,2)(3,4)(5,10,8,6,9,7)(11,12)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$2$ $6$ $(1,2)(3,4)(5,7,9,6,8,10)(11,12)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$2$ $6$ $(1,12,4,2,11,3)(5,7,9,6,8,10)$ $1$ $1$
$3$ $6$ $(1,8,4,9,11,5)(2,7,3,10,12,6)$ $0$ $0$
$3$ $6$ $(1,5,11,9,4,8)(2,6,12,10,3,7)$ $0$ $0$
$3$ $6$ $(1,7,11,6,4,10)(2,8,12,5,3,9)$ $0$ $0$
$3$ $6$ $(1,10,4,6,11,7)(2,9,3,5,12,8)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.