Properties

Label 2.3528.24t22.a.b
Dimension $2$
Group $\textrm{GL(2,3)}$
Conductor $3528$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $\textrm{GL(2,3)}$
Conductor: \(3528\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Artin stem field: Galois closure of 8.2.263473523712.2
Galois orbit size: $2$
Smallest permutation container: 24T22
Parity: odd
Determinant: 1.3.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.21168.2

Defining polynomial

$f(x)$$=$ \( x^{8} - 2x^{7} + 4x^{6} + 34x^{5} + 58x^{4} + 10x^{3} - 62x^{2} - 56x - 14 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 9.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \( x^{2} + 16x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 3 a + 10 + \left(7 a + 13\right)\cdot 17 + \left(8 a + 11\right)\cdot 17^{2} + \left(9 a + 9\right)\cdot 17^{3} + \left(12 a + 4\right)\cdot 17^{4} + \left(10 a + 3\right)\cdot 17^{5} + 7 a\cdot 17^{6} + \left(7 a + 5\right)\cdot 17^{7} + \left(15 a + 10\right)\cdot 17^{8} +O(17^{9})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 7 a + 11 + \left(16 a + 1\right)\cdot 17 + \left(12 a + 14\right)\cdot 17^{2} + \left(12 a + 1\right)\cdot 17^{3} + \left(3 a + 16\right)\cdot 17^{4} + \left(7 a + 13\right)\cdot 17^{5} + \left(8 a + 4\right)\cdot 17^{6} + \left(4 a + 13\right)\cdot 17^{7} + \left(7 a + 6\right)\cdot 17^{8} +O(17^{9})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 14 a + 13 + 9 a\cdot 17 + \left(8 a + 13\right)\cdot 17^{2} + \left(7 a + 10\right)\cdot 17^{3} + \left(4 a + 7\right)\cdot 17^{4} + \left(6 a + 1\right)\cdot 17^{5} + \left(9 a + 14\right)\cdot 17^{6} + \left(9 a + 4\right)\cdot 17^{7} + \left(a + 1\right)\cdot 17^{8} +O(17^{9})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 8 a + \left(10 a + 14\right)\cdot 17 + \left(7 a + 4\right)\cdot 17^{2} + \left(15 a + 15\right)\cdot 17^{3} + \left(a + 3\right)\cdot 17^{4} + \left(14 a + 9\right)\cdot 17^{5} + \left(10 a + 11\right)\cdot 17^{6} + \left(16 a + 8\right)\cdot 17^{7} + \left(6 a + 13\right)\cdot 17^{8} +O(17^{9})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 9 a + 8 + \left(6 a + 16\right)\cdot 17 + \left(9 a + 1\right)\cdot 17^{2} + \left(a + 6\right)\cdot 17^{3} + \left(15 a + 7\right)\cdot 17^{4} + \left(2 a + 4\right)\cdot 17^{5} + \left(6 a + 8\right)\cdot 17^{6} + 14\cdot 17^{7} + \left(10 a + 3\right)\cdot 17^{8} +O(17^{9})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 4 + 8\cdot 17 + 5\cdot 17^{2} + 7\cdot 17^{3} + 7\cdot 17^{4} + 10\cdot 17^{5} + 3\cdot 17^{6} + 16\cdot 17^{7} + 3\cdot 17^{8} +O(17^{9})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 6 + 2\cdot 17 + 6\cdot 17^{2} + 15\cdot 17^{3} + 13\cdot 17^{4} + 7\cdot 17^{5} + 2\cdot 17^{6} + 13\cdot 17^{7} + 17^{8} +O(17^{9})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 10 a + 1 + 11\cdot 17 + \left(4 a + 10\right)\cdot 17^{2} + \left(4 a + 1\right)\cdot 17^{3} + \left(13 a + 7\right)\cdot 17^{4} + 9 a\cdot 17^{5} + \left(8 a + 6\right)\cdot 17^{6} + \left(12 a + 9\right)\cdot 17^{7} + \left(9 a + 9\right)\cdot 17^{8} +O(17^{9})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,5,2)(3,6,4,7)$
$(2,7,4)(3,8,6)$
$(1,4,5,3)(2,7,8,6)$
$(1,5)(2,8)(3,4)(6,7)$
$(2,3)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,8)(3,4)(6,7)$$-2$
$12$$2$$(2,3)(4,8)(6,7)$$0$
$8$$3$$(2,7,4)(3,8,6)$$-1$
$6$$4$$(1,4,5,3)(2,7,8,6)$$0$
$8$$6$$(1,4,7,5,3,6)(2,8)$$1$
$6$$8$$(1,4,6,8,5,3,7,2)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,3,6,2,5,4,7,8)$$-\zeta_{8}^{3} - \zeta_{8}$

The blue line marks the conjugacy class containing complex conjugation.