Properties

Label 2.3840.8t11.a.b
Dimension $2$
Group $Q_8:C_2$
Conductor $3840$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8:C_2$
Conductor: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Artin stem field: Galois closure of 8.4.33973862400.1
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Determinant: 1.15.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-5}, \sqrt{6})\)

Defining polynomial

$f(x)$$=$ \( x^{8} + 4x^{6} - 28x^{4} - 100x^{2} + 25 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 167 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 34 + 25\cdot 167 + 32\cdot 167^{2} + 116\cdot 167^{3} + 146\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 58 + 2\cdot 167 + 156\cdot 167^{2} + 110\cdot 167^{3} + 70\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 76 + 99\cdot 167 + 42\cdot 167^{2} + 14\cdot 167^{3} + 135\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 80 + 102\cdot 167 + 109\cdot 167^{2} + 95\cdot 167^{3} + 121\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 87 + 64\cdot 167 + 57\cdot 167^{2} + 71\cdot 167^{3} + 45\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 91 + 67\cdot 167 + 124\cdot 167^{2} + 152\cdot 167^{3} + 31\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 109 + 164\cdot 167 + 10\cdot 167^{2} + 56\cdot 167^{3} + 96\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 133 + 141\cdot 167 + 134\cdot 167^{2} + 50\cdot 167^{3} + 20\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,8,3)(2,4,7,5)$
$(2,7)(4,5)$
$(1,2,8,7)(3,5,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$2$$(2,7)(4,5)$$0$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$1$$4$$(1,6,8,3)(2,4,7,5)$$2 \zeta_{4}$
$1$$4$$(1,3,8,6)(2,5,7,4)$$-2 \zeta_{4}$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
$2$$4$$(1,6,8,3)(2,5,7,4)$$0$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$

The blue line marks the conjugacy class containing complex conjugation.