Properties

Label 2.3840.8t11.b.a
Dimension $2$
Group $Q_8:C_2$
Conductor $3840$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8:C_2$
Conductor: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Artin stem field: Galois closure of 8.0.33973862400.3
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Determinant: 1.15.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-5}, \sqrt{-6})\)

Defining polynomial

$f(x)$$=$ \( x^{8} + 4x^{6} + 12x^{4} - 20x^{2} + 25 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 107 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 14 + 54\cdot 107 + 42\cdot 107^{2} + 17\cdot 107^{3} + 53\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 42 + 58\cdot 107 + 68\cdot 107^{2} + 105\cdot 107^{3} + 24\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 43 + 74\cdot 107 + 101\cdot 107^{2} + 60\cdot 107^{3} + 107^{4} +O(107^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 50 + 87\cdot 107 + 77\cdot 107^{2} + 105\cdot 107^{3} + 53\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 57 + 19\cdot 107 + 29\cdot 107^{2} + 107^{3} + 53\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 64 + 32\cdot 107 + 5\cdot 107^{2} + 46\cdot 107^{3} + 105\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 65 + 48\cdot 107 + 38\cdot 107^{2} + 107^{3} + 82\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 93 + 52\cdot 107 + 64\cdot 107^{2} + 89\cdot 107^{3} + 53\cdot 107^{4} +O(107^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(1,4,8,5)(2,3,7,6)$
$(1,8)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,8)(4,5)$$0$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,6)(2,5)(3,8)(4,7)$$0$
$1$$4$$(1,5,8,4)(2,3,7,6)$$-2 \zeta_{4}$
$1$$4$$(1,4,8,5)(2,6,7,3)$$2 \zeta_{4}$
$2$$4$$(1,4,8,5)(2,3,7,6)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$2$$4$$(1,3,8,6)(2,5,7,4)$$0$

The blue line marks the conjugacy class containing complex conjugation.