Properties

Label 2.399.8t6.d.a
Dimension $2$
Group $D_{8}$
Conductor $399$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{8}$
Conductor: \(399\)\(\medspace = 3 \cdot 7 \cdot 19 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 8.0.190563597.4
Galois orbit size: $2$
Smallest permutation container: $D_{8}$
Parity: odd
Determinant: 1.399.2t1.a.a
Projective image: $D_4$
Projective stem field: Galois closure of 4.0.1197.2

Defining polynomial

$f(x)$$=$ \( x^{8} - 3x^{7} + 7x^{6} - 6x^{5} + x^{4} + 6x^{3} - 3x^{2} - 9x + 9 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 22 + 175\cdot 181 + 79\cdot 181^{2} + 7\cdot 181^{3} + 73\cdot 181^{4} +O(181^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 75 + 83\cdot 181 + 155\cdot 181^{2} + 167\cdot 181^{3} + 175\cdot 181^{4} +O(181^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 78 + 20\cdot 181 + 15\cdot 181^{2} + 167\cdot 181^{3} + 131\cdot 181^{4} +O(181^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 79 + 152\cdot 181 + 68\cdot 181^{2} + 50\cdot 181^{3} + 24\cdot 181^{4} +O(181^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 93 + 92\cdot 181 + 125\cdot 181^{2} + 34\cdot 181^{3} + 158\cdot 181^{4} +O(181^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 95 + 110\cdot 181 + 92\cdot 181^{2} + 35\cdot 181^{3} + 103\cdot 181^{4} +O(181^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 119 + 106\cdot 181 + 23\cdot 181^{2} + 91\cdot 181^{3} + 51\cdot 181^{4} +O(181^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 166 + 163\cdot 181 + 162\cdot 181^{2} + 169\cdot 181^{3} + 5\cdot 181^{4} +O(181^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,7,4)(2,8,5,3)$
$(1,8,4,2,7,3,6,5)$
$(1,2)(3,6)(4,8)(5,7)$
$(1,7)(2,5)(3,8)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,5)(3,8)(4,6)$$-2$
$4$$2$$(1,4)(2,5)(6,7)$$0$
$4$$2$$(1,2)(3,6)(4,8)(5,7)$$0$
$2$$4$$(1,4,7,6)(2,3,5,8)$$0$
$2$$8$$(1,8,4,2,7,3,6,5)$$-\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,2,6,8,7,5,4,3)$$\zeta_{8}^{3} - \zeta_{8}$

The blue line marks the conjugacy class containing complex conjugation.