Basic invariants
Dimension: | $2$ |
Group: | $D_{8}$ |
Conductor: | \(399\)\(\medspace = 3 \cdot 7 \cdot 19 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 8.0.190563597.4 |
Galois orbit size: | $2$ |
Smallest permutation container: | $D_{8}$ |
Parity: | odd |
Determinant: | 1.399.2t1.a.a |
Projective image: | $D_4$ |
Projective stem field: | Galois closure of 4.0.1197.2 |
Defining polynomial
$f(x)$ | $=$ | \( x^{8} - 3x^{7} + 7x^{6} - 6x^{5} + x^{4} + 6x^{3} - 3x^{2} - 9x + 9 \) . |
The roots of $f$ are computed in $\Q_{ 181 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 22 + 175\cdot 181 + 79\cdot 181^{2} + 7\cdot 181^{3} + 73\cdot 181^{4} +O(181^{5})\) |
$r_{ 2 }$ | $=$ | \( 75 + 83\cdot 181 + 155\cdot 181^{2} + 167\cdot 181^{3} + 175\cdot 181^{4} +O(181^{5})\) |
$r_{ 3 }$ | $=$ | \( 78 + 20\cdot 181 + 15\cdot 181^{2} + 167\cdot 181^{3} + 131\cdot 181^{4} +O(181^{5})\) |
$r_{ 4 }$ | $=$ | \( 79 + 152\cdot 181 + 68\cdot 181^{2} + 50\cdot 181^{3} + 24\cdot 181^{4} +O(181^{5})\) |
$r_{ 5 }$ | $=$ | \( 93 + 92\cdot 181 + 125\cdot 181^{2} + 34\cdot 181^{3} + 158\cdot 181^{4} +O(181^{5})\) |
$r_{ 6 }$ | $=$ | \( 95 + 110\cdot 181 + 92\cdot 181^{2} + 35\cdot 181^{3} + 103\cdot 181^{4} +O(181^{5})\) |
$r_{ 7 }$ | $=$ | \( 119 + 106\cdot 181 + 23\cdot 181^{2} + 91\cdot 181^{3} + 51\cdot 181^{4} +O(181^{5})\) |
$r_{ 8 }$ | $=$ | \( 166 + 163\cdot 181 + 162\cdot 181^{2} + 169\cdot 181^{3} + 5\cdot 181^{4} +O(181^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,7)(2,5)(3,8)(4,6)$ | $-2$ |
$4$ | $2$ | $(1,4)(2,5)(6,7)$ | $0$ |
$4$ | $2$ | $(1,2)(3,6)(4,8)(5,7)$ | $0$ |
$2$ | $4$ | $(1,4,7,6)(2,3,5,8)$ | $0$ |
$2$ | $8$ | $(1,8,4,2,7,3,6,5)$ | $-\zeta_{8}^{3} + \zeta_{8}$ |
$2$ | $8$ | $(1,2,6,8,7,5,4,3)$ | $\zeta_{8}^{3} - \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.