Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(567\)\(\medspace = 3^{4} \cdot 7 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 6.0.964467.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.1.567.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$:
\( x^{2} + 12x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 10 a + 12 + \left(a + 8\right)\cdot 13 + \left(12 a + 4\right)\cdot 13^{2} + 12\cdot 13^{3} + \left(6 a + 9\right)\cdot 13^{4} + \left(4 a + 8\right)\cdot 13^{5} + \left(10 a + 10\right)\cdot 13^{6} +O(13^{7})\) |
$r_{ 2 }$ | $=$ | \( 10 a + 4 + \left(a + 12\right)\cdot 13 + \left(12 a + 10\right)\cdot 13^{2} + 11\cdot 13^{3} + \left(6 a + 10\right)\cdot 13^{4} + \left(4 a + 5\right)\cdot 13^{5} + \left(10 a + 9\right)\cdot 13^{6} +O(13^{7})\) |
$r_{ 3 }$ | $=$ | \( 8 + 9\cdot 13 + 6\cdot 13^{2} + 12\cdot 13^{4} + 2\cdot 13^{5} + 13^{6} +O(13^{7})\) |
$r_{ 4 }$ | $=$ | \( 3 a + 1 + \left(11 a + 4\right)\cdot 13 + 8\cdot 13^{2} + 12 a\cdot 13^{3} + \left(6 a + 3\right)\cdot 13^{4} + \left(8 a + 4\right)\cdot 13^{5} + \left(2 a + 2\right)\cdot 13^{6} +O(13^{7})\) |
$r_{ 5 }$ | $=$ | \( 3 a + 9 + 11 a\cdot 13 + 2\cdot 13^{2} + \left(12 a + 1\right)\cdot 13^{3} + \left(6 a + 2\right)\cdot 13^{4} + \left(8 a + 7\right)\cdot 13^{5} + \left(2 a + 3\right)\cdot 13^{6} +O(13^{7})\) |
$r_{ 6 }$ | $=$ | \( 5 + 3\cdot 13 + 6\cdot 13^{2} + 12\cdot 13^{3} + 10\cdot 13^{5} + 11\cdot 13^{6} +O(13^{7})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-2$ |
$3$ | $2$ | $(1,2)(3,6)(4,5)$ | $0$ |
$3$ | $2$ | $(1,6)(3,4)$ | $0$ |
$2$ | $3$ | $(1,5,6)(2,3,4)$ | $-1$ |
$2$ | $6$ | $(1,3,5,4,6,2)$ | $1$ |