Properties

Label 2.459.3t2.b
Dimension $2$
Group $S_3$
Conductor $459$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$S_3$
Conductor:\(459\)\(\medspace = 3^{3} \cdot 17 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 3.1.459.1
Galois orbit size: $1$
Smallest permutation container: $S_3$
Parity: odd
Projective image: $S_3$
Projective field: Galois closure of 3.1.459.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 11 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 5 + 10\cdot 11 + 11^{2} + 2\cdot 11^{3} + 6\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 8 + 5\cdot 11 + 4\cdot 11^{3} + 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 9 + 5\cdot 11 + 8\cdot 11^{2} + 4\cdot 11^{3} + 3\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character values
$c1$
$1$ $1$ $()$ $2$
$3$ $2$ $(1,2)$ $0$
$2$ $3$ $(1,2,3)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.