Properties

Label 2.459.6t3.b
Dimension 22
Group D6D_{6}
Conductor 459459
Indicator 11

Related objects

Downloads

Learn more

Basic invariants

Dimension:22
Group:D6D_{6}
Conductor:459459=3317\medspace = 3^{3} \cdot 17
Frobenius-Schur indicator: 11
Root number: 11
Artin number field: Galois closure of 6.0.632043.1
Galois orbit size: 11
Smallest permutation container: D6D_{6}
Parity: odd
Projective image: S3S_3
Projective field: Galois closure of 3.1.459.1

Galois action

Roots of defining polynomial

The roots of ff are computed in an extension of Q7\Q_{ 7 } to precision 9.
Minimal polynomial of a generator aa of KK over Q7\mathbb{Q}_{ 7 }: x2+6x+3 x^{2} + 6x + 3 Copy content Toggle raw display
Roots:
r1r_{ 1 } == 1+37+572+73+74+375+476+677+378+O(79) 1 + 3\cdot 7 + 5\cdot 7^{2} + 7^{3} + 7^{4} + 3\cdot 7^{5} + 4\cdot 7^{6} + 6\cdot 7^{7} + 3\cdot 7^{8} +O(7^{9}) Copy content Toggle raw display
r2r_{ 2 } == a+(5a+6)7+(4a+4)72+(3a+2)73+(6a+4)74+(5a+3)75+476+(5a+5)77+(a+5)78+O(79) a + \left(5 a + 6\right)\cdot 7 + \left(4 a + 4\right)\cdot 7^{2} + \left(3 a + 2\right)\cdot 7^{3} + \left(6 a + 4\right)\cdot 7^{4} + \left(5 a + 3\right)\cdot 7^{5} + 4\cdot 7^{6} + \left(5 a + 5\right)\cdot 7^{7} + \left(a + 5\right)\cdot 7^{8} +O(7^{9}) Copy content Toggle raw display
r3r_{ 3 } == 6a+1+(a+3)7+(2a+4)72+(3a+1)73+(a+3)75+(6a+6)76+(a+2)77+(5a+2)78+O(79) 6 a + 1 + \left(a + 3\right)\cdot 7 + \left(2 a + 4\right)\cdot 7^{2} + \left(3 a + 1\right)\cdot 7^{3} + \left(a + 3\right)\cdot 7^{5} + \left(6 a + 6\right)\cdot 7^{6} + \left(a + 2\right)\cdot 7^{7} + \left(5 a + 2\right)\cdot 7^{8} +O(7^{9}) Copy content Toggle raw display
r4r_{ 4 } == 6+37+72+573+574+375+276+378+O(79) 6 + 3\cdot 7 + 7^{2} + 5\cdot 7^{3} + 5\cdot 7^{4} + 3\cdot 7^{5} + 2\cdot 7^{6} + 3\cdot 7^{8} +O(7^{9}) Copy content Toggle raw display
r5r_{ 5 } == 6a+(a+1)7+(2a+2)72+(3a+4)73+274+(a+3)75+(6a+2)76+(a+1)77+(5a+1)78+O(79) 6 a + \left(a + 1\right)\cdot 7 + \left(2 a + 2\right)\cdot 7^{2} + \left(3 a + 4\right)\cdot 7^{3} + 2\cdot 7^{4} + \left(a + 3\right)\cdot 7^{5} + \left(6 a + 2\right)\cdot 7^{6} + \left(a + 1\right)\cdot 7^{7} + \left(5 a + 1\right)\cdot 7^{8} +O(7^{9}) Copy content Toggle raw display
r6r_{ 6 } == a+6+(5a+3)7+(4a+2)72+(3a+5)73+(6a+6)74+(5a+3)75+(5a+4)77+(a+4)78+O(79) a + 6 + \left(5 a + 3\right)\cdot 7 + \left(4 a + 2\right)\cdot 7^{2} + \left(3 a + 5\right)\cdot 7^{3} + \left(6 a + 6\right)\cdot 7^{4} + \left(5 a + 3\right)\cdot 7^{5} + \left(5 a + 4\right)\cdot 7^{7} + \left(a + 4\right)\cdot 7^{8} +O(7^{9}) Copy content Toggle raw display

Generators of the action on the roots r1,,r6r_1, \ldots, r_{ 6 }

Cycle notation
(1,4)(2,5)(3,6)(1,4)(2,5)(3,6)
(2,3)(5,6)(2,3)(5,6)
(1,2,3)(4,5,6)(1,2,3)(4,5,6)

Character values on conjugacy classes

SizeOrderAction on r1,,r6r_1, \ldots, r_{ 6 } Character values
c1c1
11 11 ()() 22
11 22 (1,4)(2,5)(3,6)(1,4)(2,5)(3,6) 2-2
33 22 (2,3)(5,6)(2,3)(5,6) 00
33 22 (1,4)(2,6)(3,5)(1,4)(2,6)(3,5) 00
22 33 (1,2,3)(4,5,6)(1,2,3)(4,5,6) 1-1
22 66 (1,5,3,4,2,6)(1,5,3,4,2,6) 11
The blue line marks the conjugacy class containing complex conjugation.