Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(459\)\(\medspace = 3^{3} \cdot 17 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 6.0.632043.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.1.459.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$:
\( x^{2} + 6x + 3 \)
Roots:
$r_{ 1 }$ | $=$ | \( 1 + 3\cdot 7 + 5\cdot 7^{2} + 7^{3} + 7^{4} + 3\cdot 7^{5} + 4\cdot 7^{6} + 6\cdot 7^{7} + 3\cdot 7^{8} +O(7^{9})\) |
$r_{ 2 }$ | $=$ | \( a + \left(5 a + 6\right)\cdot 7 + \left(4 a + 4\right)\cdot 7^{2} + \left(3 a + 2\right)\cdot 7^{3} + \left(6 a + 4\right)\cdot 7^{4} + \left(5 a + 3\right)\cdot 7^{5} + 4\cdot 7^{6} + \left(5 a + 5\right)\cdot 7^{7} + \left(a + 5\right)\cdot 7^{8} +O(7^{9})\) |
$r_{ 3 }$ | $=$ | \( 6 a + 1 + \left(a + 3\right)\cdot 7 + \left(2 a + 4\right)\cdot 7^{2} + \left(3 a + 1\right)\cdot 7^{3} + \left(a + 3\right)\cdot 7^{5} + \left(6 a + 6\right)\cdot 7^{6} + \left(a + 2\right)\cdot 7^{7} + \left(5 a + 2\right)\cdot 7^{8} +O(7^{9})\) |
$r_{ 4 }$ | $=$ | \( 6 + 3\cdot 7 + 7^{2} + 5\cdot 7^{3} + 5\cdot 7^{4} + 3\cdot 7^{5} + 2\cdot 7^{6} + 3\cdot 7^{8} +O(7^{9})\) |
$r_{ 5 }$ | $=$ | \( 6 a + \left(a + 1\right)\cdot 7 + \left(2 a + 2\right)\cdot 7^{2} + \left(3 a + 4\right)\cdot 7^{3} + 2\cdot 7^{4} + \left(a + 3\right)\cdot 7^{5} + \left(6 a + 2\right)\cdot 7^{6} + \left(a + 1\right)\cdot 7^{7} + \left(5 a + 1\right)\cdot 7^{8} +O(7^{9})\) |
$r_{ 6 }$ | $=$ | \( a + 6 + \left(5 a + 3\right)\cdot 7 + \left(4 a + 2\right)\cdot 7^{2} + \left(3 a + 5\right)\cdot 7^{3} + \left(6 a + 6\right)\cdot 7^{4} + \left(5 a + 3\right)\cdot 7^{5} + \left(5 a + 4\right)\cdot 7^{7} + \left(a + 4\right)\cdot 7^{8} +O(7^{9})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-2$ |
$3$ | $2$ | $(2,3)(5,6)$ | $0$ |
$3$ | $2$ | $(1,4)(2,6)(3,5)$ | $0$ |
$2$ | $3$ | $(1,2,3)(4,5,6)$ | $-1$ |
$2$ | $6$ | $(1,5,3,4,2,6)$ | $1$ |