Properties

Label 2.6400.8t17.c
Dimension 22
Group C4C2C_4\wr C_2
Conductor 64006400
Indicator 00

Related objects

Downloads

Learn more

Basic invariants

Dimension:22
Group:C4C2C_4\wr C_2
Conductor:64006400=2852\medspace = 2^{8} \cdot 5^{2}
Artin number field: Galois closure of 8.0.2097152000.7
Galois orbit size: 22
Smallest permutation container: C4C2C_4\wr C_2
Parity: odd
Projective image: D4D_4
Projective field: Galois closure of 4.2.8000.1

Galois action

Roots of defining polynomial

The roots of ff are computed in Q421\Q_{ 421 } to precision 7.
Roots:
r1r_{ 1 } == 8+113421+2774212+1304213+1304214+1944215+4054216+O(4217) 8 + 113\cdot 421 + 277\cdot 421^{2} + 130\cdot 421^{3} + 130\cdot 421^{4} + 194\cdot 421^{5} + 405\cdot 421^{6} +O(421^{7}) Copy content Toggle raw display
r2r_{ 2 } == 138+164421+3684212+3654213+854214+534215+1844216+O(4217) 138 + 164\cdot 421 + 368\cdot 421^{2} + 365\cdot 421^{3} + 85\cdot 421^{4} + 53\cdot 421^{5} + 184\cdot 421^{6} +O(421^{7}) Copy content Toggle raw display
r3r_{ 3 } == 189+279421+1214212+1454213+1544215+94216+O(4217) 189 + 279\cdot 421 + 121\cdot 421^{2} + 145\cdot 421^{3} + 154\cdot 421^{5} + 9\cdot 421^{6} +O(421^{7}) Copy content Toggle raw display
r4r_{ 4 } == 208+73421+194212+2854213+2864214+1234215+3134216+O(4217) 208 + 73\cdot 421 + 19\cdot 421^{2} + 285\cdot 421^{3} + 286\cdot 421^{4} + 123\cdot 421^{5} + 313\cdot 421^{6} +O(421^{7}) Copy content Toggle raw display
r5r_{ 5 } == 213+347421+4014212+1354213+1344214+2974215+1074216+O(4217) 213 + 347\cdot 421 + 401\cdot 421^{2} + 135\cdot 421^{3} + 134\cdot 421^{4} + 297\cdot 421^{5} + 107\cdot 421^{6} +O(421^{7}) Copy content Toggle raw display
r6r_{ 6 } == 232+141421+2994212+2754213+4204214+2664215+4114216+O(4217) 232 + 141\cdot 421 + 299\cdot 421^{2} + 275\cdot 421^{3} + 420\cdot 421^{4} + 266\cdot 421^{5} + 411\cdot 421^{6} +O(421^{7}) Copy content Toggle raw display
r7r_{ 7 } == 283+256421+524212+554213+3354214+3674215+2364216+O(4217) 283 + 256\cdot 421 + 52\cdot 421^{2} + 55\cdot 421^{3} + 335\cdot 421^{4} + 367\cdot 421^{5} + 236\cdot 421^{6} +O(421^{7}) Copy content Toggle raw display
r8r_{ 8 } == 413+307421+1434212+2904213+2904214+2264215+154216+O(4217) 413 + 307\cdot 421 + 143\cdot 421^{2} + 290\cdot 421^{3} + 290\cdot 421^{4} + 226\cdot 421^{5} + 15\cdot 421^{6} +O(421^{7}) Copy content Toggle raw display

Generators of the action on the roots r1,,r8r_1, \ldots, r_{ 8 }

Cycle notation
(1,8)(2,7)(3,6)(4,5)(1,8)(2,7)(3,6)(4,5)
(1,4,8,5)(2,6,7,3)(1,4,8,5)(2,6,7,3)
(1,3,8,6)(2,4,7,5)(1,3,8,6)(2,4,7,5)
(1,8)(3,6)(1,8)(3,6)
(1,3,8,6)(1,3,8,6)

Character values on conjugacy classes

SizeOrderAction on r1,,r8r_1, \ldots, r_{ 8 } Character values
c1c1 c2c2
11 11 ()() 22 22
11 22 (1,8)(2,7)(3,6)(4,5)(1,8)(2,7)(3,6)(4,5) 2-2 2-2
22 22 (1,8)(3,6)(1,8)(3,6) 00 00
44 22 (1,2)(3,5)(4,6)(7,8)(1,2)(3,5)(4,6)(7,8) 00 00
11 44 (1,6,8,3)(2,4,7,5)(1,6,8,3)(2,4,7,5) 2ζ4-2 \zeta_{4} 2ζ42 \zeta_{4}
11 44 (1,3,8,6)(2,5,7,4)(1,3,8,6)(2,5,7,4) 2ζ42 \zeta_{4} 2ζ4-2 \zeta_{4}
22 44 (1,3,8,6)(2,4,7,5)(1,3,8,6)(2,4,7,5) 00 00
22 44 (1,3,8,6)(1,3,8,6) ζ41-\zeta_{4} - 1 ζ41\zeta_{4} - 1
22 44 (1,6,8,3)(1,6,8,3) ζ41\zeta_{4} - 1 ζ41-\zeta_{4} - 1
22 44 (1,8)(2,4,7,5)(3,6)(1,8)(2,4,7,5)(3,6) ζ4+1\zeta_{4} + 1 ζ4+1-\zeta_{4} + 1
22 44 (1,8)(2,5,7,4)(3,6)(1,8)(2,5,7,4)(3,6) ζ4+1-\zeta_{4} + 1 ζ4+1\zeta_{4} + 1
44 44 (1,4,8,5)(2,6,7,3)(1,4,8,5)(2,6,7,3) 00 00
44 88 (1,4,6,7,8,5,3,2)(1,4,6,7,8,5,3,2) 00 00
44 88 (1,7,3,4,8,2,6,5)(1,7,3,4,8,2,6,5) 00 00
The blue line marks the conjugacy class containing complex conjugation.