Properties

Label 2.704.6t3.d
Dimension 22
Group D6D_{6}
Conductor 704704
Indicator 11

Related objects

Downloads

Learn more

Basic invariants

Dimension:22
Group:D6D_{6}
Conductor:704704=2611\medspace = 2^{6} \cdot 11
Frobenius-Schur indicator: 11
Root number: 11
Artin number field: Galois closure of 6.2.247808.1
Galois orbit size: 11
Smallest permutation container: D6D_{6}
Parity: odd
Projective image: S3S_3
Projective field: Galois closure of 3.1.44.1

Galois action

Roots of defining polynomial

The roots of ff are computed in an extension of Q7\Q_{ 7 } to precision 7.
Minimal polynomial of a generator aa of KK over Q7\mathbb{Q}_{ 7 }: x2+6x+3 x^{2} + 6x + 3 Copy content Toggle raw display
Roots:
r1r_{ 1 } == 5a+4+(a+5)7+(2a+2)72+(a+5)73+(6a+1)74+(5a+4)75+(3a+5)76+O(77) 5 a + 4 + \left(a + 5\right)\cdot 7 + \left(2 a + 2\right)\cdot 7^{2} + \left(a + 5\right)\cdot 7^{3} + \left(6 a + 1\right)\cdot 7^{4} + \left(5 a + 4\right)\cdot 7^{5} + \left(3 a + 5\right)\cdot 7^{6} +O(7^{7}) Copy content Toggle raw display
r2r_{ 2 } == 3+67+372+373+674+575+O(77) 3 + 6\cdot 7 + 3\cdot 7^{2} + 3\cdot 7^{3} + 6\cdot 7^{4} + 5\cdot 7^{5} +O(7^{7}) Copy content Toggle raw display
r3r_{ 3 } == 2a+2+(5a+2)7+(4a+3)72+(5a+4)73+674+(a+3)75+(3a+3)76+O(77) 2 a + 2 + \left(5 a + 2\right)\cdot 7 + \left(4 a + 3\right)\cdot 7^{2} + \left(5 a + 4\right)\cdot 7^{3} + 6\cdot 7^{4} + \left(a + 3\right)\cdot 7^{5} + \left(3 a + 3\right)\cdot 7^{6} +O(7^{7}) Copy content Toggle raw display
r4r_{ 4 } == 2a+3+(5a+1)7+(4a+4)72+(5a+1)73+574+(a+2)75+(3a+1)76+O(77) 2 a + 3 + \left(5 a + 1\right)\cdot 7 + \left(4 a + 4\right)\cdot 7^{2} + \left(5 a + 1\right)\cdot 7^{3} + 5\cdot 7^{4} + \left(a + 2\right)\cdot 7^{5} + \left(3 a + 1\right)\cdot 7^{6} +O(7^{7}) Copy content Toggle raw display
r5r_{ 5 } == 4+372+373+75+676+O(77) 4 + 3\cdot 7^{2} + 3\cdot 7^{3} + 7^{5} + 6\cdot 7^{6} +O(7^{7}) Copy content Toggle raw display
r6r_{ 6 } == 5a+5+(a+4)7+(2a+3)72+(a+2)73+6a74+(5a+3)75+(3a+3)76+O(77) 5 a + 5 + \left(a + 4\right)\cdot 7 + \left(2 a + 3\right)\cdot 7^{2} + \left(a + 2\right)\cdot 7^{3} + 6 a\cdot 7^{4} + \left(5 a + 3\right)\cdot 7^{5} + \left(3 a + 3\right)\cdot 7^{6} +O(7^{7}) Copy content Toggle raw display

Generators of the action on the roots r1,,r6r_1, \ldots, r_{ 6 }

Cycle notation
(2,6)(3,5)(2,6)(3,5)
(1,2,3,4,5,6)(1,2,3,4,5,6)

Character values on conjugacy classes

SizeOrderAction on r1,,r6r_1, \ldots, r_{ 6 } Character values
c1c1
11 11 ()() 22
11 22 (1,4)(2,5)(3,6)(1,4)(2,5)(3,6) 2-2
33 22 (2,6)(3,5)(2,6)(3,5) 00
33 22 (1,2)(3,6)(4,5)(1,2)(3,6)(4,5) 00
22 33 (1,3,5)(2,4,6)(1,3,5)(2,4,6) 1-1
22 66 (1,2,3,4,5,6)(1,2,3,4,5,6) 11
The blue line marks the conjugacy class containing complex conjugation.