Properties

Label 2.728.6t3.b
Dimension 22
Group D6D_{6}
Conductor 728728
Indicator 11

Related objects

Downloads

Learn more

Basic invariants

Dimension:22
Group:D6D_{6}
Conductor:728728=23713\medspace = 2^{3} \cdot 7 \cdot 13
Frobenius-Schur indicator: 11
Root number: 11
Artin number field: Galois closure of 6.2.4239872.1
Galois orbit size: 11
Smallest permutation container: D6D_{6}
Parity: odd
Projective image: S3S_3
Projective field: Galois closure of 3.1.728.1

Galois action

Roots of defining polynomial

The roots of ff are computed in an extension of Q17\Q_{ 17 } to precision 7.
Minimal polynomial of a generator aa of KK over Q17\mathbb{Q}_{ 17 }: x2+16x+3 x^{2} + 16x + 3 Copy content Toggle raw display
Roots:
r1r_{ 1 } == 9+1217+8172+3173+10174+9175+176+O(177) 9 + 12\cdot 17 + 8\cdot 17^{2} + 3\cdot 17^{3} + 10\cdot 17^{4} + 9\cdot 17^{5} + 17^{6} +O(17^{7}) Copy content Toggle raw display
r2r_{ 2 } == 7a+1+(16a+6)17+(8a+16)172+(12a+4)173+(4a+7)174+(7a+2)175+(10a+6)176+O(177) 7 a + 1 + \left(16 a + 6\right)\cdot 17 + \left(8 a + 16\right)\cdot 17^{2} + \left(12 a + 4\right)\cdot 17^{3} + \left(4 a + 7\right)\cdot 17^{4} + \left(7 a + 2\right)\cdot 17^{5} + \left(10 a + 6\right)\cdot 17^{6} +O(17^{7}) Copy content Toggle raw display
r3r_{ 3 } == 13+1117+6172+3174+10175+6176+O(177) 13 + 11\cdot 17 + 6\cdot 17^{2} + 3\cdot 17^{4} + 10\cdot 17^{5} + 6\cdot 17^{6} +O(17^{7}) Copy content Toggle raw display
r4r_{ 4 } == 11a+14+(12a+1)17+(6a+8)172+(10a+6)173+(7a+8)174+(5a+4)175+(9a+3)176+O(177) 11 a + 14 + \left(12 a + 1\right)\cdot 17 + \left(6 a + 8\right)\cdot 17^{2} + \left(10 a + 6\right)\cdot 17^{3} + \left(7 a + 8\right)\cdot 17^{4} + \left(5 a + 4\right)\cdot 17^{5} + \left(9 a + 3\right)\cdot 17^{6} +O(17^{7}) Copy content Toggle raw display
r5r_{ 5 } == 10a+8+1517+(8a+8)172+(4a+8)173+(12a+16)174+(9a+4)175+(6a+9)176+O(177) 10 a + 8 + 15\cdot 17 + \left(8 a + 8\right)\cdot 17^{2} + \left(4 a + 8\right)\cdot 17^{3} + \left(12 a + 16\right)\cdot 17^{4} + \left(9 a + 4\right)\cdot 17^{5} + \left(6 a + 9\right)\cdot 17^{6} +O(17^{7}) Copy content Toggle raw display
r6r_{ 6 } == 6a+8+(4a+3)17+(10a+2)172+(6a+10)173+(9a+5)174+(11a+2)175+(7a+7)176+O(177) 6 a + 8 + \left(4 a + 3\right)\cdot 17 + \left(10 a + 2\right)\cdot 17^{2} + \left(6 a + 10\right)\cdot 17^{3} + \left(9 a + 5\right)\cdot 17^{4} + \left(11 a + 2\right)\cdot 17^{5} + \left(7 a + 7\right)\cdot 17^{6} +O(17^{7}) Copy content Toggle raw display

Generators of the action on the roots r1,,r6r_1, \ldots, r_{ 6 }

Cycle notation
(1,2)(3,6)(1,2)(3,6)
(1,3)(2,6)(4,5)(1,3)(2,6)(4,5)
(2,5)(4,6)(2,5)(4,6)

Character values on conjugacy classes

SizeOrderAction on r1,,r6r_1, \ldots, r_{ 6 } Character values
c1c1
11 11 ()() 22
11 22 (1,3)(2,6)(4,5)(1,3)(2,6)(4,5) 2-2
33 22 (1,2)(3,6)(1,2)(3,6) 00
33 22 (1,6)(2,3)(4,5)(1,6)(2,3)(4,5) 00
22 33 (1,5,2)(3,4,6)(1,5,2)(3,4,6) 1-1
22 66 (1,4,2,3,5,6)(1,4,2,3,5,6) 11
The blue line marks the conjugacy class containing complex conjugation.