Properties

Label 2.832.8t17.a.b
Dimension $2$
Group $C_4\wr C_2$
Conductor $832$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $C_4\wr C_2$
Conductor: \(832\)\(\medspace = 2^{6} \cdot 13 \)
Artin stem field: Galois closure of 8.0.575930368.1
Galois orbit size: $2$
Smallest permutation container: $C_4\wr C_2$
Parity: odd
Determinant: 1.13.4t1.a.a
Projective image: $D_4$
Projective stem field: Galois closure of 4.2.35152.1

Defining polynomial

$f(x)$$=$ \( x^{8} - 6x^{4} + 13 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 9.

Roots:
$r_{ 1 }$ $=$ \( 15 + 19\cdot 53 + 2\cdot 53^{2} + 51\cdot 53^{3} + 45\cdot 53^{4} + 39\cdot 53^{5} + 42\cdot 53^{6} + 32\cdot 53^{7} + 43\cdot 53^{8} +O(53^{9})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 22 + 16\cdot 53 + 17\cdot 53^{2} + 27\cdot 53^{3} + 24\cdot 53^{4} + 9\cdot 53^{5} + 4\cdot 53^{6} + 25\cdot 53^{7} + 12\cdot 53^{8} +O(53^{9})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 24 + 7\cdot 53 + 45\cdot 53^{2} + 50\cdot 53^{3} + 51\cdot 53^{4} + 14\cdot 53^{5} + 24\cdot 53^{6} + 16\cdot 53^{7} + 41\cdot 53^{8} +O(53^{9})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 26 + 4\cdot 53 + 28\cdot 53^{2} + 11\cdot 53^{3} + 23\cdot 53^{4} + 11\cdot 53^{5} + 4\cdot 53^{6} + 8\cdot 53^{7} + 48\cdot 53^{8} +O(53^{9})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 27 + 48\cdot 53 + 24\cdot 53^{2} + 41\cdot 53^{3} + 29\cdot 53^{4} + 41\cdot 53^{5} + 48\cdot 53^{6} + 44\cdot 53^{7} + 4\cdot 53^{8} +O(53^{9})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 29 + 45\cdot 53 + 7\cdot 53^{2} + 2\cdot 53^{3} + 53^{4} + 38\cdot 53^{5} + 28\cdot 53^{6} + 36\cdot 53^{7} + 11\cdot 53^{8} +O(53^{9})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 31 + 36\cdot 53 + 35\cdot 53^{2} + 25\cdot 53^{3} + 28\cdot 53^{4} + 43\cdot 53^{5} + 48\cdot 53^{6} + 27\cdot 53^{7} + 40\cdot 53^{8} +O(53^{9})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 38 + 33\cdot 53 + 50\cdot 53^{2} + 53^{3} + 7\cdot 53^{4} + 13\cdot 53^{5} + 10\cdot 53^{6} + 20\cdot 53^{7} + 9\cdot 53^{8} +O(53^{9})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(2,6,7,3)$
$(1,6,8,3)(2,4,7,5)$
$(2,7)(3,6)$
$(1,5,8,4)(2,6,7,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(2,7)(3,6)$$0$
$4$$2$$(1,7)(2,8)(3,4)(5,6)$$0$
$1$$4$$(1,5,8,4)(2,3,7,6)$$-2 \zeta_{4}$
$1$$4$$(1,4,8,5)(2,6,7,3)$$2 \zeta_{4}$
$2$$4$$(1,5,8,4)(2,6,7,3)$$0$
$2$$4$$(2,6,7,3)$$\zeta_{4} + 1$
$2$$4$$(2,3,7,6)$$-\zeta_{4} + 1$
$2$$4$$(1,5,8,4)(2,7)(3,6)$$-\zeta_{4} - 1$
$2$$4$$(1,4,8,5)(2,7)(3,6)$$\zeta_{4} - 1$
$4$$4$$(1,6,8,3)(2,4,7,5)$$0$
$4$$8$$(1,7,5,6,8,2,4,3)$$0$
$4$$8$$(1,6,4,7,8,3,5,2)$$0$