Properties

Label 2.8619.3t2.a.a
Dimension 22
Group S3S_3
Conductor 86198619
Root number 11
Indicator 11

Related objects

Downloads

Learn more

Basic invariants

Dimension: 22
Group: S3S_3
Conductor: 86198619=313217\medspace = 3 \cdot 13^{2} \cdot 17
Frobenius-Schur indicator: 11
Root number: 11
Artin stem field: Galois closure of 3.1.8619.1
Galois orbit size: 11
Smallest permutation container: S3S_3
Parity: odd
Determinant: 1.51.2t1.a.a
Projective image: S3S_3
Projective stem field: Galois closure of 3.1.8619.1

Defining polynomial

f(x)f(x)== x3x2+9x+12 x^{3} - x^{2} + 9x + 12 Copy content Toggle raw display .

The roots of ff are computed in Q19\Q_{ 19 } to precision 5.

Roots:
r1r_{ 1 } == 3+1719+5192+12193+10194+O(195) 3 + 17\cdot 19 + 5\cdot 19^{2} + 12\cdot 19^{3} + 10\cdot 19^{4} +O(19^{5}) Copy content Toggle raw display
r2r_{ 2 } == 8+1719+10192+12193+15194+O(195) 8 + 17\cdot 19 + 10\cdot 19^{2} + 12\cdot 19^{3} + 15\cdot 19^{4} +O(19^{5}) Copy content Toggle raw display
r3r_{ 3 } == 9+319+2192+13193+11194+O(195) 9 + 3\cdot 19 + 2\cdot 19^{2} + 13\cdot 19^{3} + 11\cdot 19^{4} +O(19^{5}) Copy content Toggle raw display

Generators of the action on the roots r1,r2,r3 r_{ 1 }, r_{ 2 }, r_{ 3 }

Cycle notation
(1,2,3)(1,2,3)
(1,2)(1,2)

Character values on conjugacy classes

SizeOrderAction on r1,r2,r3 r_{ 1 }, r_{ 2 }, r_{ 3 } Character valueComplex conjugation
1111()()22
3322(1,2)(1,2)00
2233(1,2,3)(1,2,3)1-1