Properties

Label 2.928.8t17.a.a
Dimension 22
Group C4C2C_4\wr C_2
Conductor 928928
Root number not computed
Indicator 00

Related objects

Downloads

Learn more

Basic invariants

Dimension: 22
Group: C4C2C_4\wr C_2
Conductor: 928928=2529\medspace = 2^{5} \cdot 29
Artin stem field: Galois closure of 8.0.1598357504.1
Galois orbit size: 22
Smallest permutation container: C4C2C_4\wr C_2
Parity: odd
Determinant: 1.29.4t1.a.b
Projective image: D4D_4
Projective stem field: Galois closure of 4.2.390224.1

Defining polynomial

f(x)f(x)== x810x4+29 x^{8} - 10x^{4} + 29 Copy content Toggle raw display .

The roots of ff are computed in Q181\Q_{ 181 } to precision 8.

Roots:
r1r_{ 1 } == 32+150181+331812+981813+41815+1201816+541817+O(1818) 32 + 150\cdot 181 + 33\cdot 181^{2} + 98\cdot 181^{3} + 4\cdot 181^{5} + 120\cdot 181^{6} + 54\cdot 181^{7} +O(181^{8}) Copy content Toggle raw display
r2r_{ 2 } == 53+110181+401812+1421813+621814+1301815+1171816+581817+O(1818) 53 + 110\cdot 181 + 40\cdot 181^{2} + 142\cdot 181^{3} + 62\cdot 181^{4} + 130\cdot 181^{5} + 117\cdot 181^{6} + 58\cdot 181^{7} +O(181^{8}) Copy content Toggle raw display
r3r_{ 3 } == 65+22181+641812+1631813+531814+881815+1671816+821817+O(1818) 65 + 22\cdot 181 + 64\cdot 181^{2} + 163\cdot 181^{3} + 53\cdot 181^{4} + 88\cdot 181^{5} + 167\cdot 181^{6} + 82\cdot 181^{7} +O(181^{8}) Copy content Toggle raw display
r4r_{ 4 } == 79+155181+561812+961813+1671814+371815+1201816+261817+O(1818) 79 + 155\cdot 181 + 56\cdot 181^{2} + 96\cdot 181^{3} + 167\cdot 181^{4} + 37\cdot 181^{5} + 120\cdot 181^{6} + 26\cdot 181^{7} +O(181^{8}) Copy content Toggle raw display
r5r_{ 5 } == 102+25181+1241812+841813+131814+1431815+601816+1541817+O(1818) 102 + 25\cdot 181 + 124\cdot 181^{2} + 84\cdot 181^{3} + 13\cdot 181^{4} + 143\cdot 181^{5} + 60\cdot 181^{6} + 154\cdot 181^{7} +O(181^{8}) Copy content Toggle raw display
r6r_{ 6 } == 116+158181+1161812+171813+1271814+921815+131816+981817+O(1818) 116 + 158\cdot 181 + 116\cdot 181^{2} + 17\cdot 181^{3} + 127\cdot 181^{4} + 92\cdot 181^{5} + 13\cdot 181^{6} + 98\cdot 181^{7} +O(181^{8}) Copy content Toggle raw display
r7r_{ 7 } == 128+70181+1401812+381813+1181814+501815+631816+1221817+O(1818) 128 + 70\cdot 181 + 140\cdot 181^{2} + 38\cdot 181^{3} + 118\cdot 181^{4} + 50\cdot 181^{5} + 63\cdot 181^{6} + 122\cdot 181^{7} +O(181^{8}) Copy content Toggle raw display
r8r_{ 8 } == 149+30181+1471812+821813+1801814+1761815+601816+1261817+O(1818) 149 + 30\cdot 181 + 147\cdot 181^{2} + 82\cdot 181^{3} + 180\cdot 181^{4} + 176\cdot 181^{5} + 60\cdot 181^{6} + 126\cdot 181^{7} +O(181^{8}) Copy content Toggle raw display

Generators of the action on the roots r1,,r8r_1, \ldots, r_{ 8 }

Cycle notation
(1,8)(2,7)(3,6)(4,5)(1,8)(2,7)(3,6)(4,5)
(1,6,8,3)(2,4,7,5)(1,6,8,3)(2,4,7,5)
(2,4,7,5)(2,4,7,5)
(1,2,6,5,8,7,3,4)(1,2,6,5,8,7,3,4)
(2,7)(4,5)(2,7)(4,5)

Character values on conjugacy classes

SizeOrderAction on r1,,r8r_1, \ldots, r_{ 8 } Character valueComplex conjugation
1111()()22
1122(1,8)(2,7)(3,6)(4,5)(1,8)(2,7)(3,6)(4,5)2-2
2222(2,7)(4,5)(2,7)(4,5)00
4422(1,2)(3,4)(5,6)(7,8)(1,2)(3,4)(5,6)(7,8)00
1144(1,6,8,3)(2,5,7,4)(1,6,8,3)(2,5,7,4)2ζ42 \zeta_{4}
1144(1,3,8,6)(2,4,7,5)(1,3,8,6)(2,4,7,5)2ζ4-2 \zeta_{4}
2244(1,6,8,3)(2,4,7,5)(1,6,8,3)(2,4,7,5)00
2244(2,4,7,5)(2,4,7,5)ζ4+1-\zeta_{4} + 1
2244(2,5,7,4)(2,5,7,4)ζ4+1\zeta_{4} + 1
2244(1,6,8,3)(2,7)(4,5)(1,6,8,3)(2,7)(4,5)ζ41\zeta_{4} - 1
2244(1,3,8,6)(2,7)(4,5)(1,3,8,6)(2,7)(4,5)ζ41-\zeta_{4} - 1
4444(1,5,8,4)(2,6,7,3)(1,5,8,4)(2,6,7,3)00
4488(1,2,6,5,8,7,3,4)(1,2,6,5,8,7,3,4)00
4488(1,5,3,2,8,4,6,7)(1,5,3,2,8,4,6,7)00