Basic invariants
Dimension: | $4$ |
Group: | $S_5$ |
Conductor: | \(4511\)\(\medspace = 13 \cdot 347 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 5.3.4511.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_5$ |
Parity: | odd |
Projective image: | $S_5$ |
Projective field: | Galois closure of 5.3.4511.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$:
\( x^{2} + 33x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 7 a + 16 + \left(5 a + 23\right)\cdot 37 + \left(20 a + 6\right)\cdot 37^{2} + \left(35 a + 36\right)\cdot 37^{3} + \left(22 a + 25\right)\cdot 37^{4} +O(37^{5})\) |
$r_{ 2 }$ | $=$ | \( 21 + 6\cdot 37 + 6\cdot 37^{2} + 5\cdot 37^{3} + 27\cdot 37^{4} +O(37^{5})\) |
$r_{ 3 }$ | $=$ | \( 18 a + 16 + \left(6 a + 36\right)\cdot 37 + \left(10 a + 27\right)\cdot 37^{2} + \left(8 a + 36\right)\cdot 37^{3} + \left(11 a + 24\right)\cdot 37^{4} +O(37^{5})\) |
$r_{ 4 }$ | $=$ | \( 30 a + 7 + 31 a\cdot 37 + \left(16 a + 8\right)\cdot 37^{2} + \left(a + 10\right)\cdot 37^{3} + \left(14 a + 8\right)\cdot 37^{4} +O(37^{5})\) |
$r_{ 5 }$ | $=$ | \( 19 a + 14 + \left(30 a + 7\right)\cdot 37 + \left(26 a + 25\right)\cdot 37^{2} + \left(28 a + 22\right)\cdot 37^{3} + \left(25 a + 24\right)\cdot 37^{4} +O(37^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 5 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 5 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $4$ |
$10$ | $2$ | $(1,2)$ | $2$ |
$15$ | $2$ | $(1,2)(3,4)$ | $0$ |
$20$ | $3$ | $(1,2,3)$ | $1$ |
$30$ | $4$ | $(1,2,3,4)$ | $0$ |
$24$ | $5$ | $(1,2,3,4,5)$ | $-1$ |
$20$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |