⌂
→
Artin representations
→
Search results
Citation
·
Feedback
·
Hide Menu
Artin representation search results
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Artin representations labels
Refine search
Dimension
Conductor
Group
Root number
Parity
even
odd
Smallest permutation
Ramified
include
exactly
subset
Unramified primes
Ramified prime count
Frobenius-Schur
Projective image
Projective image type
Dn
A4
S4
A5
Sort order
Select
Search again
Random representation
▲ dimension
conductor
group
ramified prime count
projective image
columns to display
✓ label
✓ dimension
✓ conductor
ramified prime count
✓ Artin stem field
✓ image
projective image
container
✓ indicator
✓ trace of complex conj.
show all
Results (1-50 of 18585 matches)
Next
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Galois conjugate representations are grouped into single lines.
Label
Dimension
Conductor
Ramified prime count
Artin stem field
$G$
Projective image
Container
Ind
$\chi(c)$
1.1002109.2t1.a.a
$1$
$ 1002109 $
$1$
\(\Q(\sqrt{1002109}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1002413.2t1.a.a
$1$
$ 61 \cdot 16433 $
$2$
\(\Q(\sqrt{1002413}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1003541.2t1.a.a
$1$
$ 7 \cdot 11 \cdot 13033 $
$3$
\(\Q(\sqrt{1003541}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1007137.2t1.a.a
$1$
$ 1007137 $
$1$
\(\Q(\sqrt{1007137}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1011913.2t1.a.a
$1$
$ 7 \cdot 37 \cdot 3907 $
$3$
\(\Q(\sqrt{1011913}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1013613.2t1.a.a
$1$
$ 3 \cdot 337871 $
$2$
\(\Q(\sqrt{1013613}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1015537.2t1.a.a
$1$
$ 107 \cdot 9491 $
$2$
\(\Q(\sqrt{1015537}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1016777.2t1.a.a
$1$
$ 1016777 $
$1$
\(\Q(\sqrt{1016777}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1018217.2t1.a.a
$1$
$ 1018217 $
$1$
\(\Q(\sqrt{1018217}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1020732.2t1.a.a
$1$
$ 2^{2} \cdot 3 \cdot 85061 $
$3$
\(\Q(\sqrt{255183}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1024469.2t1.a.a
$1$
$ 83 \cdot 12343 $
$2$
\(\Q(\sqrt{1024469}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1024636.2t1.a.a
$1$
$ 2^{2} \cdot 127 \cdot 2017 $
$3$
\(\Q(\sqrt{256159}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1027081.2t1.a.a
$1$
$ 11 \cdot 93371 $
$2$
\(\Q(\sqrt{1027081}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1031001.2t1.a.a
$1$
$ 3 \cdot 343667 $
$2$
\(\Q(\sqrt{1031001}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1032140.2t1.a.a
$1$
$ 2^{2} \cdot 5 \cdot 51607 $
$3$
\(\Q(\sqrt{258035}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1033441.2t1.a.a
$1$
$ 1033441 $
$1$
\(\Q(\sqrt{1033441}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1033709.2t1.a.a
$1$
$ 797 \cdot 1297 $
$2$
\(\Q(\sqrt{1033709}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1034533.2t1.a.a
$1$
$ 211 \cdot 4903 $
$2$
\(\Q(\sqrt{1034533}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1041639.2t1.a.a
$1$
$ 3 \cdot 103 \cdot 3371 $
$3$
\(\Q(\sqrt{-1041639}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.1045573.2t1.a.a
$1$
$ 1045573 $
$1$
\(\Q(\sqrt{1045573}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1047017.2t1.a.a
$1$
$ 41 \cdot 25537 $
$2$
\(\Q(\sqrt{1047017}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1047297.2t1.a.a
$1$
$ 3 \cdot 349099 $
$2$
\(\Q(\sqrt{1047297}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1048193.2t1.a.a
$1$
$ 1048193 $
$1$
\(\Q(\sqrt{1048193}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1048413.2t1.a.a
$1$
$ 3 \cdot 349471 $
$2$
\(\Q(\sqrt{1048413}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1049285.2t1.a.a
$1$
$ 5 \cdot 209857 $
$2$
\(\Q(\sqrt{1049285}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1049368.2t1.a.a
$1$
$ 2^{3} \cdot 131171 $
$2$
\(\Q(\sqrt{262342}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1052233.2t1.a.a
$1$
$ 7 \cdot 13 \cdot 31 \cdot 373 $
$4$
\(\Q(\sqrt{1052233}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1052869.2t1.a.a
$1$
$ 887 \cdot 1187 $
$2$
\(\Q(\sqrt{1052869}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1054012.2t1.a.a
$1$
$ 2^{2} \cdot 263503 $
$2$
\(\Q(\sqrt{263503}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1054013.2t1.a.a
$1$
$ 1054013 $
$1$
\(\Q(\sqrt{1054013}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1058429.2t1.a.a
$1$
$ 439 \cdot 2411 $
$2$
\(\Q(\sqrt{1058429}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1059969.2t1.a.a
$1$
$ 3 \cdot 137 \cdot 2579 $
$3$
\(\Q(\sqrt{1059969}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1060109.2t1.a.a
$1$
$ 857 \cdot 1237 $
$2$
\(\Q(\sqrt{1060109}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1062137.2t1.a.a
$1$
$ 641 \cdot 1657 $
$2$
\(\Q(\sqrt{1062137}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1063256.2t1.a.a
$1$
$ 2^{3} \cdot 29 \cdot 4583 $
$3$
\(\Q(\sqrt{265814}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1063369.2t1.a.a
$1$
$ 499 \cdot 2131 $
$2$
\(\Q(\sqrt{1063369}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1064209.2t1.a.a
$1$
$ 19 \cdot 79 \cdot 709 $
$3$
\(\Q(\sqrt{1064209}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1068297.2t1.a.a
$1$
$ 3 \cdot 17 \cdot 20947 $
$3$
\(\Q(\sqrt{1068297}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1068321.2t1.a.a
$1$
$ 3 \cdot 53 \cdot 6719 $
$3$
\(\Q(\sqrt{1068321}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1069193.2t1.a.a
$1$
$ 1069193 $
$1$
\(\Q(\sqrt{1069193}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1069765.2t1.a.a
$1$
$ 5 \cdot 213953 $
$2$
\(\Q(\sqrt{1069765}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1070705.2t1.a.a
$1$
$ 5 \cdot 214141 $
$2$
\(\Q(\sqrt{1070705}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1072033.2t1.a.a
$1$
$ 43 \cdot 107 \cdot 233 $
$3$
\(\Q(\sqrt{1072033}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1072473.2t1.a.a
$1$
$ 3 \cdot 389 \cdot 919 $
$3$
\(\Q(\sqrt{1072473}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1072820.2t1.a.a
$1$
$ 2^{2} \cdot 5 \cdot 7 \cdot 79 \cdot 97 $
$5$
\(\Q(\sqrt{-268205}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.1076753.2t1.a.a
$1$
$ 1076753 $
$1$
\(\Q(\sqrt{1076753}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1078193.2t1.a.a
$1$
$ 19 \cdot 56747 $
$2$
\(\Q(\sqrt{1078193}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1079897.2t1.a.a
$1$
$ 7 \cdot 13 \cdot 11867 $
$3$
\(\Q(\sqrt{1079897}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1083633.2t1.a.a
$1$
$ 3 \cdot 361211 $
$2$
\(\Q(\sqrt{1083633}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.1084313.2t1.a.a
$1$
$ 1084313 $
$1$
\(\Q(\sqrt{1084313}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
Next
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV