⌂
→
Artin representations
→
Search results
Citation
·
Feedback
·
Hide Menu
Artin representation search results
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Artin representations labels
Refine search
Dimension
Conductor
Group
Root number
Parity
even
odd
Smallest permutation
Ramified
include
exactly
subset
Unramified primes
Ramified prime count
Frobenius-Schur
Projective image
Projective image type
Dn
A4
S4
A5
Sort order
Select
Search again
Random representation
▲ dimension
conductor
group
ramified prime count
projective image
columns to display
✓ label
✓ dimension
✓ conductor
ramified prime count
✓ Artin stem field
✓ image
projective image
container
✓ indicator
✓ trace of complex conj.
show all
Results (1-50 of 22257 matches)
Next
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Galois conjugate representations are grouped into single lines.
Label
Dimension
Conductor
Ramified prime count
Artin stem field
$G$
Projective image
Container
Ind
$\chi(c)$
1.10039112.4t1.a.a
1.10039112.4t1.a.b
$1$
$ 2^{3} \cdot 17 \cdot 97 \cdot 761 $
$4$
4.4.166192436315349056.1
$C_4$
$C_1$
$C_4$
$0$
$1$
1.10085623.2t1.a.a
$1$
$ 10085623 $
$1$
\(\Q(\sqrt{-10085623}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10087976.2t1.a.a
$1$
$ 2^{3} \cdot 37 \cdot 173 \cdot 197 $
$4$
\(\Q(\sqrt{-2521994}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10139839.2t1.a.a
$1$
$ 619 \cdot 16381 $
$2$
\(\Q(\sqrt{-10139839}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10156007.2t1.a.a
$1$
$ 10156007 $
$1$
\(\Q(\sqrt{-10156007}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10185743.2t1.a.a
$1$
$ 1531 \cdot 6653 $
$2$
\(\Q(\sqrt{-10185743}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10198091.2t1.a.a
$1$
$ 59 \cdot 172849 $
$2$
\(\Q(\sqrt{-10198091}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10313387.2t1.a.a
$1$
$ 7 \cdot 1473341 $
$2$
\(\Q(\sqrt{-10313387}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10333303.2t1.a.a
$1$
$ 211 \cdot 48973 $
$2$
\(\Q(\sqrt{-10333303}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10373983.2t1.a.a
$1$
$ 691 \cdot 15013 $
$2$
\(\Q(\sqrt{-10373983}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10450447.2t1.a.a
$1$
$ 7 \cdot 83 \cdot 17987 $
$3$
\(\Q(\sqrt{-10450447}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10463384.2t1.a.a
$1$
$ 2^{3} \cdot 1307923 $
$2$
\(\Q(\sqrt{-2615846}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10499147.2t1.a.a
$1$
$ 10499147 $
$1$
\(\Q(\sqrt{-10499147}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10523199.2t1.a.a
$1$
$ 3 \cdot 433 \cdot 8101 $
$3$
\(\Q(\sqrt{-10523199}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10527443.2t1.a.a
$1$
$ 53 \cdot 139 \cdot 1429 $
$3$
\(\Q(\sqrt{-10527443}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10549799.2t1.a.a
$1$
$ 13 \cdot 811523 $
$2$
\(\Q(\sqrt{-10549799}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10590020.2t1.a.a
$1$
$ 2^{2} \cdot 5 \cdot 7 \cdot 67 \cdot 1129 $
$5$
\(\Q(\sqrt{-2647505}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10591927.2t1.a.a
$1$
$ 127 \cdot 83401 $
$2$
\(\Q(\sqrt{-10591927}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10653287.2t1.a.a
$1$
$ 10653287 $
$1$
\(\Q(\sqrt{-10653287}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10665079.2t1.a.a
$1$
$ 79 \cdot 127 \cdot 1063 $
$3$
\(\Q(\sqrt{-10665079}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10679831.2t1.a.a
$1$
$ 10679831 $
$1$
\(\Q(\sqrt{-10679831}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10742807.2t1.a.a
$1$
$ 10742807 $
$1$
\(\Q(\sqrt{-10742807}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10773227.2t1.a.a
$1$
$ 1613 \cdot 6679 $
$2$
\(\Q(\sqrt{-10773227}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10810636.2t1.a.a
$1$
$ 2^{2} \cdot 101 \cdot 26759 $
$3$
\(\Q(\sqrt{2702659}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10824271.2t1.a.a
$1$
$ 101 \cdot 107171 $
$2$
\(\Q(\sqrt{-10824271}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10842191.2t1.a.a
$1$
$ 10842191 $
$1$
\(\Q(\sqrt{-10842191}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10907521.2t1.a.a
$1$
$ 109 \cdot 100069 $
$2$
\(\Q(\sqrt{10907521}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.10928123.2t1.a.a
$1$
$ 53 \cdot 206191 $
$2$
\(\Q(\sqrt{-10928123}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.10933427.2t1.a.a
$1$
$ 173 \cdot 63199 $
$2$
\(\Q(\sqrt{-10933427}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11024791.2t1.a.a
$1$
$ 11024791 $
$1$
\(\Q(\sqrt{-11024791}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11025561.2t1.a.a
$1$
$ 3 \cdot 3675187 $
$2$
\(\Q(\sqrt{11025561}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.11029607.2t1.a.a
$1$
$ 67 \cdot 164621 $
$2$
\(\Q(\sqrt{-11029607}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11054807.2t1.a.a
$1$
$ 1733 \cdot 6379 $
$2$
\(\Q(\sqrt{-11054807}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11118873.2t1.a.a
$1$
$ 3 \cdot 383 \cdot 9677 $
$3$
\(\Q(\sqrt{11118873}) \)
$C_2$
$C_1$
$C_2$
$1$
$1$
1.11122367.2t1.a.a
$1$
$ 167 \cdot 66601 $
$2$
\(\Q(\sqrt{-11122367}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11144743.2t1.a.a
$1$
$ 41 \cdot 229 \cdot 1187 $
$3$
\(\Q(\sqrt{-11144743}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11204567.2t1.a.a
$1$
$ 11 \cdot 97 \cdot 10501 $
$3$
\(\Q(\sqrt{-11204567}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11236111.2t1.a.a
$1$
$ 11236111 $
$1$
\(\Q(\sqrt{-11236111}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11257144.2t1.a.a
$1$
$ 2^{3} \cdot 1407143 $
$2$
\(\Q(\sqrt{-2814286}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11274103.2t1.a.a
$1$
$ 11274103 $
$1$
\(\Q(\sqrt{-11274103}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11302687.2t1.a.a
$1$
$ 11 \cdot 691 \cdot 1487 $
$3$
\(\Q(\sqrt{-11302687}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11309831.2t1.a.a
$1$
$ 13 \cdot 113 \cdot 7699 $
$3$
\(\Q(\sqrt{-11309831}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11311252.2t1.a.a
$1$
$ 2^{2} \cdot 2827813 $
$2$
\(\Q(\sqrt{-2827813}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11327455.2t1.a.a
$1$
$ 5 \cdot 367 \cdot 6173 $
$3$
\(\Q(\sqrt{-11327455}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11354599.2t1.a.a
$1$
$ 613 \cdot 18523 $
$2$
\(\Q(\sqrt{-11354599}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11412299.2t1.a.a
$1$
$ 107 \cdot 106657 $
$2$
\(\Q(\sqrt{-11412299}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11441207.2t1.a.a
$1$
$ 11441207 $
$1$
\(\Q(\sqrt{-11441207}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11481271.2t1.a.a
$1$
$ 41 \cdot 280031 $
$2$
\(\Q(\sqrt{-11481271}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11553739.2t1.a.a
$1$
$ 433 \cdot 26683 $
$2$
\(\Q(\sqrt{-11553739}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
1.11600387.2t1.a.a
$1$
$ 1531 \cdot 7577 $
$2$
\(\Q(\sqrt{-11600387}) \)
$C_2$
$C_1$
$C_2$
$1$
$-1$
Next
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV