Properties

Label 100.71
Modulus 100100
Conductor 100100
Order 1010
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,6]))
 
pari: [g,chi] = znchar(Mod(71,100))
 

Basic properties

Modulus: 100100
Conductor: 100100
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 100.j

χ100(11,)\chi_{100}(11,\cdot) χ100(31,)\chi_{100}(31,\cdot) χ100(71,)\chi_{100}(71,\cdot) χ100(91,)\chi_{100}(91,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: 10.0.156250000000000.1

Values on generators

(51,77)(51,77)(1,e(35))(-1,e\left(\frac{3}{5}\right))

First values

aa 1-1113377991111131317171919212123232727
χ100(71,a) \chi_{ 100 }(71, a) 1-111e(710)e\left(\frac{7}{10}\right)1-1e(25)e\left(\frac{2}{5}\right)e(110)e\left(\frac{1}{10}\right)e(25)e\left(\frac{2}{5}\right)e(45)e\left(\frac{4}{5}\right)e(310)e\left(\frac{3}{10}\right)e(15)e\left(\frac{1}{5}\right)e(110)e\left(\frac{1}{10}\right)e(110)e\left(\frac{1}{10}\right)
sage: chi.jacobi_sum(n)
 
χ100(71,a)   \chi_{ 100 }(71,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ100(71,))   \tau_{ a }( \chi_{ 100 }(71,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ100(71,),χ100(n,))   J(\chi_{ 100 }(71,·),\chi_{ 100 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ100(71,))  K(a,b,\chi_{ 100 }(71,·)) \; at   a,b=\; a,b = e.g. 1,2