Properties

Label 100.87
Modulus 100100
Conductor 100100
Order 2020
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,9]))
 
pari: [g,chi] = znchar(Mod(87,100))
 

Basic properties

Modulus: 100100
Conductor: 100100
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 100.l

χ100(3,)\chi_{100}(3,\cdot) χ100(23,)\chi_{100}(23,\cdot) χ100(27,)\chi_{100}(27,\cdot) χ100(47,)\chi_{100}(47,\cdot) χ100(63,)\chi_{100}(63,\cdot) χ100(67,)\chi_{100}(67,\cdot) χ100(83,)\chi_{100}(83,\cdot) χ100(87,)\chi_{100}(87,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Q(ζ100)+\Q(\zeta_{100})^+

Values on generators

(51,77)(51,77)(1,e(920))(-1,e\left(\frac{9}{20}\right))

First values

aa 1-1113377991111131317171919212123232727
χ100(87,a) \chi_{ 100 }(87, a) 1111e(1320)e\left(\frac{13}{20}\right)i-ie(310)e\left(\frac{3}{10}\right)e(710)e\left(\frac{7}{10}\right)e(1120)e\left(\frac{11}{20}\right)e(1720)e\left(\frac{17}{20}\right)e(35)e\left(\frac{3}{5}\right)e(25)e\left(\frac{2}{5}\right)e(920)e\left(\frac{9}{20}\right)e(1920)e\left(\frac{19}{20}\right)
sage: chi.jacobi_sum(n)
 
χ100(87,a)   \chi_{ 100 }(87,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ100(87,))   \tau_{ a }( \chi_{ 100 }(87,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ100(87,),χ100(n,))   J(\chi_{ 100 }(87,·),\chi_{ 100 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ100(87,))  K(a,b,\chi_{ 100 }(87,·)) \; at   a,b=\; a,b = e.g. 1,2