Properties

Label 100014.503
Modulus $100014$
Conductor $50007$
Order $2730$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100014, base_ring=CyclotomicField(2730))
 
M = H._module
 
chi = DirichletCharacter(H, M([1365,385,2236]))
 
pari: [g,chi] = znchar(Mod(503,100014))
 

Basic properties

Modulus: \(100014\)
Conductor: \(50007\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2730\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{50007}(503,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 100014.lt

\(\chi_{100014}(47,\cdot)\) \(\chi_{100014}(53,\cdot)\) \(\chi_{100014}(503,\cdot)\) \(\chi_{100014}(695,\cdot)\) \(\chi_{100014}(983,\cdot)\) \(\chi_{100014}(1007,\cdot)\) \(\chi_{100014}(1061,\cdot)\) \(\chi_{100014}(1181,\cdot)\) \(\chi_{100014}(1259,\cdot)\) \(\chi_{100014}(1475,\cdot)\) \(\chi_{100014}(1481,\cdot)\) \(\chi_{100014}(1529,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1365})$
Fixed field: Number field defined by a degree 2730 polynomial (not computed)

Values on generators

\((66677,1267,32707)\) → \((-1,e\left(\frac{11}{78}\right),e\left(\frac{86}{105}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 100014 }(503, a) \) \(1\)\(1\)\(e\left(\frac{977}{2730}\right)\)\(e\left(\frac{293}{910}\right)\)\(e\left(\frac{2117}{2730}\right)\)\(e\left(\frac{1007}{1365}\right)\)\(e\left(\frac{617}{1365}\right)\)\(e\left(\frac{42}{65}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{977}{1365}\right)\)\(e\left(\frac{902}{1365}\right)\)\(e\left(\frac{8}{91}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 100014 }(503,a) \;\) at \(\;a = \) e.g. 2