Properties

Label 100315.78
Modulus $100315$
Conductor $100315$
Order $40124$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100315, base_ring=CyclotomicField(40124))
 
M = H._module
 
chi = DirichletCharacter(H, M([30093,34548]))
 
pari: [g,chi] = znchar(Mod(78,100315))
 

Basic properties

Modulus: \(100315\)
Conductor: \(100315\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(40124\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 100315.w

\(\chi_{100315}(3,\cdot)\) \(\chi_{100315}(12,\cdot)\) \(\chi_{100315}(13,\cdot)\) \(\chi_{100315}(18,\cdot)\) \(\chi_{100315}(22,\cdot)\) \(\chi_{100315}(23,\cdot)\) \(\chi_{100315}(27,\cdot)\) \(\chi_{100315}(33,\cdot)\) \(\chi_{100315}(37,\cdot)\) \(\chi_{100315}(38,\cdot)\) \(\chi_{100315}(48,\cdot)\) \(\chi_{100315}(52,\cdot)\) \(\chi_{100315}(53,\cdot)\) \(\chi_{100315}(57,\cdot)\) \(\chi_{100315}(58,\cdot)\) \(\chi_{100315}(62,\cdot)\) \(\chi_{100315}(67,\cdot)\) \(\chi_{100315}(72,\cdot)\) \(\chi_{100315}(78,\cdot)\) \(\chi_{100315}(83,\cdot)\) \(\chi_{100315}(88,\cdot)\) \(\chi_{100315}(92,\cdot)\) \(\chi_{100315}(93,\cdot)\) \(\chi_{100315}(97,\cdot)\) \(\chi_{100315}(98,\cdot)\) \(\chi_{100315}(107,\cdot)\) \(\chi_{100315}(108,\cdot)\) \(\chi_{100315}(113,\cdot)\) \(\chi_{100315}(117,\cdot)\) \(\chi_{100315}(132,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{40124})$
Fixed field: Number field defined by a degree 40124 polynomial (not computed)

Values on generators

\((40127,40131)\) → \((-i,e\left(\frac{8637}{10031}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 100315 }(78, a) \) \(-1\)\(1\)\(e\left(\frac{1431}{5732}\right)\)\(e\left(\frac{25379}{40124}\right)\)\(e\left(\frac{1431}{2866}\right)\)\(e\left(\frac{8849}{10031}\right)\)\(e\left(\frac{37209}{40124}\right)\)\(e\left(\frac{4293}{5732}\right)\)\(e\left(\frac{5317}{20062}\right)\)\(e\left(\frac{5386}{10031}\right)\)\(e\left(\frac{5289}{40124}\right)\)\(e\left(\frac{32659}{40124}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 100315 }(78,a) \;\) at \(\;a = \) e.g. 2