Properties

Label 1013.25
Modulus $1013$
Conductor $1013$
Order $506$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1013, base_ring=CyclotomicField(506))
 
M = H._module
 
chi = DirichletCharacter(H, M([251]))
 
pari: [g,chi] = znchar(Mod(25,1013))
 

Basic properties

Modulus: \(1013\)
Conductor: \(1013\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(506\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1013.k

\(\chi_{1013}(9,\cdot)\) \(\chi_{1013}(13,\cdot)\) \(\chi_{1013}(15,\cdot)\) \(\chi_{1013}(21,\cdot)\) \(\chi_{1013}(24,\cdot)\) \(\chi_{1013}(25,\cdot)\) \(\chi_{1013}(35,\cdot)\) \(\chi_{1013}(40,\cdot)\) \(\chi_{1013}(43,\cdot)\) \(\chi_{1013}(49,\cdot)\) \(\chi_{1013}(51,\cdot)\) \(\chi_{1013}(53,\cdot)\) \(\chi_{1013}(54,\cdot)\) \(\chi_{1013}(56,\cdot)\) \(\chi_{1013}(66,\cdot)\) \(\chi_{1013}(71,\cdot)\) \(\chi_{1013}(73,\cdot)\) \(\chi_{1013}(74,\cdot)\) \(\chi_{1013}(76,\cdot)\) \(\chi_{1013}(78,\cdot)\) \(\chi_{1013}(79,\cdot)\) \(\chi_{1013}(85,\cdot)\) \(\chi_{1013}(87,\cdot)\) \(\chi_{1013}(93,\cdot)\) \(\chi_{1013}(110,\cdot)\) \(\chi_{1013}(119,\cdot)\) \(\chi_{1013}(123,\cdot)\) \(\chi_{1013}(126,\cdot)\) \(\chi_{1013}(130,\cdot)\) \(\chi_{1013}(136,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{253})$
Fixed field: Number field defined by a degree 506 polynomial (not computed)

Values on generators

\(3\) → \(e\left(\frac{251}{506}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 1013 }(25, a) \) \(1\)\(1\)\(e\left(\frac{3}{46}\right)\)\(e\left(\frac{251}{506}\right)\)\(e\left(\frac{3}{23}\right)\)\(e\left(\frac{257}{506}\right)\)\(e\left(\frac{142}{253}\right)\)\(e\left(\frac{129}{506}\right)\)\(e\left(\frac{9}{46}\right)\)\(e\left(\frac{251}{253}\right)\)\(e\left(\frac{145}{253}\right)\)\(e\left(\frac{15}{23}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1013 }(25,a) \;\) at \(\;a = \) e.g. 2