Properties

Label 1013.26
Modulus $1013$
Conductor $1013$
Order $1012$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1013, base_ring=CyclotomicField(1012))
 
M = H._module
 
chi = DirichletCharacter(H, M([181]))
 
pari: [g,chi] = znchar(Mod(26,1013))
 

Basic properties

Modulus: \(1013\)
Conductor: \(1013\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1012\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1013.l

\(\chi_{1013}(3,\cdot)\) \(\chi_{1013}(5,\cdot)\) \(\chi_{1013}(7,\cdot)\) \(\chi_{1013}(12,\cdot)\) \(\chi_{1013}(17,\cdot)\) \(\chi_{1013}(18,\cdot)\) \(\chi_{1013}(20,\cdot)\) \(\chi_{1013}(26,\cdot)\) \(\chi_{1013}(27,\cdot)\) \(\chi_{1013}(28,\cdot)\) \(\chi_{1013}(29,\cdot)\) \(\chi_{1013}(30,\cdot)\) \(\chi_{1013}(31,\cdot)\) \(\chi_{1013}(33,\cdot)\) \(\chi_{1013}(37,\cdot)\) \(\chi_{1013}(38,\cdot)\) \(\chi_{1013}(39,\cdot)\) \(\chi_{1013}(41,\cdot)\) \(\chi_{1013}(42,\cdot)\) \(\chi_{1013}(47,\cdot)\) \(\chi_{1013}(48,\cdot)\) \(\chi_{1013}(50,\cdot)\) \(\chi_{1013}(55,\cdot)\) \(\chi_{1013}(57,\cdot)\) \(\chi_{1013}(59,\cdot)\) \(\chi_{1013}(61,\cdot)\) \(\chi_{1013}(63,\cdot)\) \(\chi_{1013}(67,\cdot)\) \(\chi_{1013}(68,\cdot)\) \(\chi_{1013}(69,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1012})$
Fixed field: Number field defined by a degree 1012 polynomial (not computed)

Values on generators

\(3\) → \(e\left(\frac{181}{1012}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 1013 }(26, a) \) \(-1\)\(1\)\(e\left(\frac{85}{92}\right)\)\(e\left(\frac{181}{1012}\right)\)\(e\left(\frac{39}{46}\right)\)\(e\left(\frac{397}{1012}\right)\)\(e\left(\frac{26}{253}\right)\)\(e\left(\frac{849}{1012}\right)\)\(e\left(\frac{71}{92}\right)\)\(e\left(\frac{181}{506}\right)\)\(e\left(\frac{80}{253}\right)\)\(e\left(\frac{11}{46}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1013 }(26,a) \;\) at \(\;a = \) e.g. 2