Properties

Label 103.100
Modulus 103103
Conductor 103103
Order 1717
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(103, base_ring=CyclotomicField(34))
 
M = H._module
 
chi = DirichletCharacter(H, M([30]))
 
pari: [g,chi] = znchar(Mod(100,103))
 

Basic properties

Modulus: 103103
Conductor: 103103
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1717
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 103.e

χ103(8,)\chi_{103}(8,\cdot) χ103(9,)\chi_{103}(9,\cdot) χ103(13,)\chi_{103}(13,\cdot) χ103(14,)\chi_{103}(14,\cdot) χ103(23,)\chi_{103}(23,\cdot) χ103(30,)\chi_{103}(30,\cdot) χ103(34,)\chi_{103}(34,\cdot) χ103(61,)\chi_{103}(61,\cdot) χ103(64,)\chi_{103}(64,\cdot) χ103(66,)\chi_{103}(66,\cdot) χ103(72,)\chi_{103}(72,\cdot) χ103(76,)\chi_{103}(76,\cdot) χ103(79,)\chi_{103}(79,\cdot) χ103(81,)\chi_{103}(81,\cdot) χ103(93,)\chi_{103}(93,\cdot) χ103(100,)\chi_{103}(100,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ17)\Q(\zeta_{17})
Fixed field: Number field defined by a degree 17 polynomial

Values on generators

55e(1517)e\left(\frac{15}{17}\right)

First values

aa 1-111223344556677889910101111
χ103(100,a) \chi_{ 103 }(100, a) 1111e(1417)e\left(\frac{14}{17}\right)e(717)e\left(\frac{7}{17}\right)e(1117)e\left(\frac{11}{17}\right)e(1517)e\left(\frac{15}{17}\right)e(417)e\left(\frac{4}{17}\right)e(917)e\left(\frac{9}{17}\right)e(817)e\left(\frac{8}{17}\right)e(1417)e\left(\frac{14}{17}\right)e(1217)e\left(\frac{12}{17}\right)e(1417)e\left(\frac{14}{17}\right)
sage: chi.jacobi_sum(n)
 
χ103(100,a)   \chi_{ 103 }(100,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ103(100,))   \tau_{ a }( \chi_{ 103 }(100,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ103(100,),χ103(n,))   J(\chi_{ 103 }(100,·),\chi_{ 103 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ103(100,))  K(a,b,\chi_{ 103 }(100,·)) \; at   a,b=\; a,b = e.g. 1,2