Properties

Label 103.11
Modulus 103103
Conductor 103103
Order 102102
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(103, base_ring=CyclotomicField(102))
 
M = H._module
 
chi = DirichletCharacter(H, M([61]))
 
pari: [g,chi] = znchar(Mod(11,103))
 

Basic properties

Modulus: 103103
Conductor: 103103
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 102102
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 103.h

χ103(5,)\chi_{103}(5,\cdot) χ103(6,)\chi_{103}(6,\cdot) χ103(11,)\chi_{103}(11,\cdot) χ103(12,)\chi_{103}(12,\cdot) χ103(20,)\chi_{103}(20,\cdot) χ103(21,)\chi_{103}(21,\cdot) χ103(35,)\chi_{103}(35,\cdot) χ103(40,)\chi_{103}(40,\cdot) χ103(43,)\chi_{103}(43,\cdot) χ103(44,)\chi_{103}(44,\cdot) χ103(45,)\chi_{103}(45,\cdot) χ103(48,)\chi_{103}(48,\cdot) χ103(51,)\chi_{103}(51,\cdot) χ103(53,)\chi_{103}(53,\cdot) χ103(54,)\chi_{103}(54,\cdot) χ103(62,)\chi_{103}(62,\cdot) χ103(65,)\chi_{103}(65,\cdot) χ103(67,)\chi_{103}(67,\cdot) χ103(70,)\chi_{103}(70,\cdot) χ103(71,)\chi_{103}(71,\cdot) χ103(74,)\chi_{103}(74,\cdot) χ103(75,)\chi_{103}(75,\cdot) χ103(77,)\chi_{103}(77,\cdot) χ103(78,)\chi_{103}(78,\cdot) χ103(84,)\chi_{103}(84,\cdot) χ103(85,)\chi_{103}(85,\cdot) χ103(86,)\chi_{103}(86,\cdot) χ103(87,)\chi_{103}(87,\cdot) χ103(88,)\chi_{103}(88,\cdot) χ103(96,)\chi_{103}(96,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ51)\Q(\zeta_{51})
Fixed field: Number field defined by a degree 102 polynomial (not computed)

Values on generators

55e(61102)e\left(\frac{61}{102}\right)

First values

aa 1-111223344556677889910101111
χ103(11,a) \chi_{ 103 }(11, a) 1-111e(1651)e\left(\frac{16}{51}\right)e(1134)e\left(\frac{11}{34}\right)e(3251)e\left(\frac{32}{51}\right)e(61102)e\left(\frac{61}{102}\right)e(65102)e\left(\frac{65}{102}\right)e(2051)e\left(\frac{20}{51}\right)e(1617)e\left(\frac{16}{17}\right)e(1117)e\left(\frac{11}{17}\right)e(3134)e\left(\frac{31}{34}\right)e(49102)e\left(\frac{49}{102}\right)
sage: chi.jacobi_sum(n)
 
χ103(11,a)   \chi_{ 103 }(11,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ103(11,))   \tau_{ a }( \chi_{ 103 }(11,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ103(11,),χ103(n,))   J(\chi_{ 103 }(11,·),\chi_{ 103 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ103(11,))  K(a,b,\chi_{ 103 }(11,·)) \; at   a,b=\; a,b = e.g. 1,2