Properties

Label 1035.1019
Modulus $1035$
Conductor $1035$
Order $66$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1035, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,33,57]))
 
pari: [g,chi] = znchar(Mod(1019,1035))
 

Basic properties

Modulus: \(1035\)
Conductor: \(1035\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1035.br

\(\chi_{1035}(14,\cdot)\) \(\chi_{1035}(74,\cdot)\) \(\chi_{1035}(149,\cdot)\) \(\chi_{1035}(194,\cdot)\) \(\chi_{1035}(329,\cdot)\) \(\chi_{1035}(389,\cdot)\) \(\chi_{1035}(419,\cdot)\) \(\chi_{1035}(434,\cdot)\) \(\chi_{1035}(479,\cdot)\) \(\chi_{1035}(569,\cdot)\) \(\chi_{1035}(659,\cdot)\) \(\chi_{1035}(704,\cdot)\) \(\chi_{1035}(734,\cdot)\) \(\chi_{1035}(779,\cdot)\) \(\chi_{1035}(824,\cdot)\) \(\chi_{1035}(839,\cdot)\) \(\chi_{1035}(884,\cdot)\) \(\chi_{1035}(914,\cdot)\) \(\chi_{1035}(1004,\cdot)\) \(\chi_{1035}(1019,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((461,622,856)\) → \((e\left(\frac{1}{6}\right),-1,e\left(\frac{19}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 1035 }(1019, a) \) \(1\)\(1\)\(e\left(\frac{13}{33}\right)\)\(e\left(\frac{26}{33}\right)\)\(e\left(\frac{19}{33}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{31}{33}\right)\)\(e\left(\frac{61}{66}\right)\)\(e\left(\frac{32}{33}\right)\)\(e\left(\frac{19}{33}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{21}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1035 }(1019,a) \;\) at \(\;a = \) e.g. 2