sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1035, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([11,33,21]))
pari:[g,chi] = znchar(Mod(569,1035))
Modulus: | 1035 | |
Conductor: | 1035 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 66 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1035(14,⋅)
χ1035(74,⋅)
χ1035(149,⋅)
χ1035(194,⋅)
χ1035(329,⋅)
χ1035(389,⋅)
χ1035(419,⋅)
χ1035(434,⋅)
χ1035(479,⋅)
χ1035(569,⋅)
χ1035(659,⋅)
χ1035(704,⋅)
χ1035(734,⋅)
χ1035(779,⋅)
χ1035(824,⋅)
χ1035(839,⋅)
χ1035(884,⋅)
χ1035(914,⋅)
χ1035(1004,⋅)
χ1035(1019,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(461,622,856) → (e(61),−1,e(227))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 19 |
χ1035(569,a) |
1 | 1 | e(3310) | e(3320) | e(337) | e(1110) | e(331) | e(6619) | e(3317) | e(337) | e(225) | e(2217) |
sage:chi.jacobi_sum(n)