Properties

Label 1037.190
Modulus $1037$
Conductor $1037$
Order $240$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1037, base_ring=CyclotomicField(240))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,196]))
 
pari: [g,chi] = znchar(Mod(190,1037))
 

Basic properties

Modulus: \(1037\)
Conductor: \(1037\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(240\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1037.cr

\(\chi_{1037}(6,\cdot)\) \(\chi_{1037}(10,\cdot)\) \(\chi_{1037}(63,\cdot)\) \(\chi_{1037}(78,\cdot)\) \(\chi_{1037}(92,\cdot)\) \(\chi_{1037}(96,\cdot)\) \(\chi_{1037}(105,\cdot)\) \(\chi_{1037}(116,\cdot)\) \(\chi_{1037}(124,\cdot)\) \(\chi_{1037}(148,\cdot)\) \(\chi_{1037}(173,\cdot)\) \(\chi_{1037}(176,\cdot)\) \(\chi_{1037}(181,\cdot)\) \(\chi_{1037}(190,\cdot)\) \(\chi_{1037}(193,\cdot)\) \(\chi_{1037}(201,\cdot)\) \(\chi_{1037}(209,\cdot)\) \(\chi_{1037}(214,\cdot)\) \(\chi_{1037}(261,\cdot)\) \(\chi_{1037}(279,\cdot)\) \(\chi_{1037}(335,\cdot)\) \(\chi_{1037}(360,\cdot)\) \(\chi_{1037}(364,\cdot)\) \(\chi_{1037}(396,\cdot)\) \(\chi_{1037}(397,\cdot)\) \(\chi_{1037}(401,\cdot)\) \(\chi_{1037}(445,\cdot)\) \(\chi_{1037}(470,\cdot)\) \(\chi_{1037}(471,\cdot)\) \(\chi_{1037}(486,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{240})$
Fixed field: Number field defined by a degree 240 polynomial (not computed)

Values on generators

\((428,307)\) → \((e\left(\frac{1}{16}\right),e\left(\frac{49}{60}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 1037 }(190, a) \) \(1\)\(1\)\(e\left(\frac{83}{120}\right)\)\(e\left(\frac{77}{80}\right)\)\(e\left(\frac{23}{60}\right)\)\(e\left(\frac{67}{240}\right)\)\(e\left(\frac{157}{240}\right)\)\(e\left(\frac{169}{240}\right)\)\(e\left(\frac{3}{40}\right)\)\(e\left(\frac{37}{40}\right)\)\(e\left(\frac{233}{240}\right)\)\(e\left(\frac{11}{16}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1037 }(190,a) \;\) at \(\;a = \) e.g. 2