sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1037, base_ring=CyclotomicField(240))
M = H._module
chi = DirichletCharacter(H, M([15,196]))
pari:[g,chi] = znchar(Mod(190,1037))
Modulus: | 1037 | |
Conductor: | 1037 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 240 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1037(6,⋅)
χ1037(10,⋅)
χ1037(63,⋅)
χ1037(78,⋅)
χ1037(92,⋅)
χ1037(96,⋅)
χ1037(105,⋅)
χ1037(116,⋅)
χ1037(124,⋅)
χ1037(148,⋅)
χ1037(173,⋅)
χ1037(176,⋅)
χ1037(181,⋅)
χ1037(190,⋅)
χ1037(193,⋅)
χ1037(201,⋅)
χ1037(209,⋅)
χ1037(214,⋅)
χ1037(261,⋅)
χ1037(279,⋅)
χ1037(335,⋅)
χ1037(360,⋅)
χ1037(364,⋅)
χ1037(396,⋅)
χ1037(397,⋅)
χ1037(401,⋅)
χ1037(445,⋅)
χ1037(470,⋅)
χ1037(471,⋅)
χ1037(486,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(428,307) → (e(161),e(6049))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ1037(190,a) |
1 | 1 | e(12083) | e(8077) | e(6023) | e(24067) | e(240157) | e(240169) | e(403) | e(4037) | e(240233) | e(1611) |
sage:chi.jacobi_sum(n)