Properties

Label 1037.190
Modulus 10371037
Conductor 10371037
Order 240240
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1037, base_ring=CyclotomicField(240)) M = H._module chi = DirichletCharacter(H, M([15,196]))
 
Copy content pari:[g,chi] = znchar(Mod(190,1037))
 

Basic properties

Modulus: 10371037
Conductor: 10371037
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 240240
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1037.cr

χ1037(6,)\chi_{1037}(6,\cdot) χ1037(10,)\chi_{1037}(10,\cdot) χ1037(63,)\chi_{1037}(63,\cdot) χ1037(78,)\chi_{1037}(78,\cdot) χ1037(92,)\chi_{1037}(92,\cdot) χ1037(96,)\chi_{1037}(96,\cdot) χ1037(105,)\chi_{1037}(105,\cdot) χ1037(116,)\chi_{1037}(116,\cdot) χ1037(124,)\chi_{1037}(124,\cdot) χ1037(148,)\chi_{1037}(148,\cdot) χ1037(173,)\chi_{1037}(173,\cdot) χ1037(176,)\chi_{1037}(176,\cdot) χ1037(181,)\chi_{1037}(181,\cdot) χ1037(190,)\chi_{1037}(190,\cdot) χ1037(193,)\chi_{1037}(193,\cdot) χ1037(201,)\chi_{1037}(201,\cdot) χ1037(209,)\chi_{1037}(209,\cdot) χ1037(214,)\chi_{1037}(214,\cdot) χ1037(261,)\chi_{1037}(261,\cdot) χ1037(279,)\chi_{1037}(279,\cdot) χ1037(335,)\chi_{1037}(335,\cdot) χ1037(360,)\chi_{1037}(360,\cdot) χ1037(364,)\chi_{1037}(364,\cdot) χ1037(396,)\chi_{1037}(396,\cdot) χ1037(397,)\chi_{1037}(397,\cdot) χ1037(401,)\chi_{1037}(401,\cdot) χ1037(445,)\chi_{1037}(445,\cdot) χ1037(470,)\chi_{1037}(470,\cdot) χ1037(471,)\chi_{1037}(471,\cdot) χ1037(486,)\chi_{1037}(486,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ240)\Q(\zeta_{240})
Fixed field: Number field defined by a degree 240 polynomial (not computed)

Values on generators

(428,307)(428,307)(e(116),e(4960))(e\left(\frac{1}{16}\right),e\left(\frac{49}{60}\right))

First values

aa 1-111223344556677889910101111
χ1037(190,a) \chi_{ 1037 }(190, a) 1111e(83120)e\left(\frac{83}{120}\right)e(7780)e\left(\frac{77}{80}\right)e(2360)e\left(\frac{23}{60}\right)e(67240)e\left(\frac{67}{240}\right)e(157240)e\left(\frac{157}{240}\right)e(169240)e\left(\frac{169}{240}\right)e(340)e\left(\frac{3}{40}\right)e(3740)e\left(\frac{37}{40}\right)e(233240)e\left(\frac{233}{240}\right)e(1116)e\left(\frac{11}{16}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ1037(190,a)   \chi_{ 1037 }(190,a) \; at   a=\;a = e.g. 2