Properties

Label 1037.28
Modulus $1037$
Conductor $1037$
Order $80$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1037, base_ring=CyclotomicField(80))
 
M = H._module
 
chi = DirichletCharacter(H, M([35,68]))
 
pari: [g,chi] = znchar(Mod(28,1037))
 

Basic properties

Modulus: \(1037\)
Conductor: \(1037\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(80\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1037.ck

\(\chi_{1037}(28,\cdot)\) \(\chi_{1037}(114,\cdot)\) \(\chi_{1037}(130,\cdot)\) \(\chi_{1037}(159,\cdot)\) \(\chi_{1037}(160,\cdot)\) \(\chi_{1037}(175,\cdot)\) \(\chi_{1037}(207,\cdot)\) \(\chi_{1037}(211,\cdot)\) \(\chi_{1037}(216,\cdot)\) \(\chi_{1037}(267,\cdot)\) \(\chi_{1037}(277,\cdot)\) \(\chi_{1037}(282,\cdot)\) \(\chi_{1037}(313,\cdot)\) \(\chi_{1037}(328,\cdot)\) \(\chi_{1037}(333,\cdot)\) \(\chi_{1037}(435,\cdot)\) \(\chi_{1037}(465,\cdot)\) \(\chi_{1037}(516,\cdot)\) \(\chi_{1037}(541,\cdot)\) \(\chi_{1037}(573,\cdot)\) \(\chi_{1037}(618,\cdot)\) \(\chi_{1037}(634,\cdot)\) \(\chi_{1037}(643,\cdot)\) \(\chi_{1037}(694,\cdot)\) \(\chi_{1037}(708,\cdot)\) \(\chi_{1037}(785,\cdot)\) \(\chi_{1037}(887,\cdot)\) \(\chi_{1037}(891,\cdot)\) \(\chi_{1037}(938,\cdot)\) \(\chi_{1037}(1000,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((428,307)\) → \((e\left(\frac{7}{16}\right),e\left(\frac{17}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 1037 }(28, a) \) \(1\)\(1\)\(e\left(\frac{39}{40}\right)\)\(e\left(\frac{43}{80}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{71}{80}\right)\)\(e\left(\frac{41}{80}\right)\)\(e\left(\frac{37}{80}\right)\)\(e\left(\frac{37}{40}\right)\)\(e\left(\frac{3}{40}\right)\)\(e\left(\frac{69}{80}\right)\)\(e\left(\frac{13}{16}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1037 }(28,a) \;\) at \(\;a = \) e.g. 2