Properties

Label 1037.818
Modulus $1037$
Conductor $1037$
Order $120$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1037, base_ring=CyclotomicField(120))
 
M = H._module
 
chi = DirichletCharacter(H, M([105,88]))
 
pari: [g,chi] = znchar(Mod(818,1037))
 

Basic properties

Modulus: \(1037\)
Conductor: \(1037\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(120\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1037.co

\(\chi_{1037}(15,\cdot)\) \(\chi_{1037}(25,\cdot)\) \(\chi_{1037}(42,\cdot)\) \(\chi_{1037}(76,\cdot)\) \(\chi_{1037}(77,\cdot)\) \(\chi_{1037}(83,\cdot)\) \(\chi_{1037}(117,\cdot)\) \(\chi_{1037}(134,\cdot)\) \(\chi_{1037}(138,\cdot)\) \(\chi_{1037}(144,\cdot)\) \(\chi_{1037}(178,\cdot)\) \(\chi_{1037}(179,\cdot)\) \(\chi_{1037}(195,\cdot)\) \(\chi_{1037}(240,\cdot)\) \(\chi_{1037}(321,\cdot)\) \(\chi_{1037}(382,\cdot)\) \(\chi_{1037}(423,\cdot)\) \(\chi_{1037}(484,\cdot)\) \(\chi_{1037}(757,\cdot)\) \(\chi_{1037}(774,\cdot)\) \(\chi_{1037}(808,\cdot)\) \(\chi_{1037}(818,\cdot)\) \(\chi_{1037}(835,\cdot)\) \(\chi_{1037}(869,\cdot)\) \(\chi_{1037}(876,\cdot)\) \(\chi_{1037}(910,\cdot)\) \(\chi_{1037}(927,\cdot)\) \(\chi_{1037}(937,\cdot)\) \(\chi_{1037}(971,\cdot)\) \(\chi_{1037}(988,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{120})$
Fixed field: Number field defined by a degree 120 polynomial (not computed)

Values on generators

\((428,307)\) → \((e\left(\frac{7}{8}\right),e\left(\frac{11}{15}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 1037 }(818, a) \) \(1\)\(1\)\(e\left(\frac{59}{60}\right)\)\(e\left(\frac{11}{40}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{61}{120}\right)\)\(e\left(\frac{31}{120}\right)\)\(e\left(\frac{67}{120}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{59}{120}\right)\)\(e\left(\frac{1}{8}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1037 }(818,a) \;\) at \(\;a = \) e.g. 2