sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1037, base_ring=CyclotomicField(120))
M = H._module
chi = DirichletCharacter(H, M([75,76]))
pari:[g,chi] = znchar(Mod(110,1037))
Modulus: | 1037 | |
Conductor: | 1037 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 120 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1037(19,⋅)
χ1037(36,⋅)
χ1037(49,⋅)
χ1037(66,⋅)
χ1037(100,⋅)
χ1037(110,⋅)
χ1037(127,⋅)
χ1037(161,⋅)
χ1037(168,⋅)
χ1037(202,⋅)
χ1037(219,⋅)
χ1037(229,⋅)
χ1037(263,⋅)
χ1037(280,⋅)
χ1037(553,⋅)
χ1037(614,⋅)
χ1037(655,⋅)
χ1037(716,⋅)
χ1037(797,⋅)
χ1037(842,⋅)
χ1037(858,⋅)
χ1037(859,⋅)
χ1037(893,⋅)
χ1037(899,⋅)
χ1037(903,⋅)
χ1037(920,⋅)
χ1037(954,⋅)
χ1037(960,⋅)
χ1037(961,⋅)
χ1037(995,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(428,307) → (e(85),e(3019))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ1037(110,a) |
1 | 1 | e(6023) | e(4017) | e(3023) | e(1207) | e(12097) | e(120109) | e(203) | e(2017) | e(12053) | e(87) |
sage:chi.jacobi_sum(n)