Properties

Label 1037.110
Modulus 10371037
Conductor 10371037
Order 120120
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1037, base_ring=CyclotomicField(120)) M = H._module chi = DirichletCharacter(H, M([75,76]))
 
Copy content pari:[g,chi] = znchar(Mod(110,1037))
 

Basic properties

Modulus: 10371037
Conductor: 10371037
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 120120
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1037.cn

χ1037(19,)\chi_{1037}(19,\cdot) χ1037(36,)\chi_{1037}(36,\cdot) χ1037(49,)\chi_{1037}(49,\cdot) χ1037(66,)\chi_{1037}(66,\cdot) χ1037(100,)\chi_{1037}(100,\cdot) χ1037(110,)\chi_{1037}(110,\cdot) χ1037(127,)\chi_{1037}(127,\cdot) χ1037(161,)\chi_{1037}(161,\cdot) χ1037(168,)\chi_{1037}(168,\cdot) χ1037(202,)\chi_{1037}(202,\cdot) χ1037(219,)\chi_{1037}(219,\cdot) χ1037(229,)\chi_{1037}(229,\cdot) χ1037(263,)\chi_{1037}(263,\cdot) χ1037(280,)\chi_{1037}(280,\cdot) χ1037(553,)\chi_{1037}(553,\cdot) χ1037(614,)\chi_{1037}(614,\cdot) χ1037(655,)\chi_{1037}(655,\cdot) χ1037(716,)\chi_{1037}(716,\cdot) χ1037(797,)\chi_{1037}(797,\cdot) χ1037(842,)\chi_{1037}(842,\cdot) χ1037(858,)\chi_{1037}(858,\cdot) χ1037(859,)\chi_{1037}(859,\cdot) χ1037(893,)\chi_{1037}(893,\cdot) χ1037(899,)\chi_{1037}(899,\cdot) χ1037(903,)\chi_{1037}(903,\cdot) χ1037(920,)\chi_{1037}(920,\cdot) χ1037(954,)\chi_{1037}(954,\cdot) χ1037(960,)\chi_{1037}(960,\cdot) χ1037(961,)\chi_{1037}(961,\cdot) χ1037(995,)\chi_{1037}(995,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ120)\Q(\zeta_{120})
Fixed field: Number field defined by a degree 120 polynomial (not computed)

Values on generators

(428,307)(428,307)(e(58),e(1930))(e\left(\frac{5}{8}\right),e\left(\frac{19}{30}\right))

First values

aa 1-111223344556677889910101111
χ1037(110,a) \chi_{ 1037 }(110, a) 1111e(2360)e\left(\frac{23}{60}\right)e(1740)e\left(\frac{17}{40}\right)e(2330)e\left(\frac{23}{30}\right)e(7120)e\left(\frac{7}{120}\right)e(97120)e\left(\frac{97}{120}\right)e(109120)e\left(\frac{109}{120}\right)e(320)e\left(\frac{3}{20}\right)e(1720)e\left(\frac{17}{20}\right)e(53120)e\left(\frac{53}{120}\right)e(78)e\left(\frac{7}{8}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ1037(110,a)   \chi_{ 1037 }(110,a) \; at   a=\;a = e.g. 2