Properties

Label 104.11
Modulus 104104
Conductor 104104
Order 1212
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(104, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,6,7]))
 
pari: [g,chi] = znchar(Mod(11,104))
 

Basic properties

Modulus: 104104
Conductor: 104104
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 104.u

χ104(11,)\chi_{104}(11,\cdot) χ104(19,)\chi_{104}(19,\cdot) χ104(59,)\chi_{104}(59,\cdot) χ104(67,)\chi_{104}(67,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.469804094334435328.1

Values on generators

(79,53,41)(79,53,41)(1,1,e(712))(-1,-1,e\left(\frac{7}{12}\right))

First values

aa 1-11133557799111115151717191921212323
χ104(11,a) \chi_{ 104 }(11, a) 1111e(13)e\left(\frac{1}{3}\right)i-ie(1112)e\left(\frac{11}{12}\right)e(23)e\left(\frac{2}{3}\right)e(112)e\left(\frac{1}{12}\right)e(112)e\left(\frac{1}{12}\right)e(16)e\left(\frac{1}{6}\right)e(1112)e\left(\frac{11}{12}\right)iie(13)e\left(\frac{1}{3}\right)
sage: chi.jacobi_sum(n)
 
χ104(11,a)   \chi_{ 104 }(11,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ104(11,))   \tau_{ a }( \chi_{ 104 }(11,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ104(11,),χ104(n,))   J(\chi_{ 104 }(11,·),\chi_{ 104 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ104(11,))  K(a,b,\chi_{ 104 }(11,·)) \; at   a,b=\; a,b = e.g. 1,2