Properties

Label 104.5
Modulus 104104
Conductor 104104
Order 44
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(104, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,2,3]))
 
pari: [g,chi] = znchar(Mod(5,104))
 

Basic properties

Modulus: 104104
Conductor: 104104
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 104.j

χ104(5,)\chi_{104}(5,\cdot) χ104(21,)\chi_{104}(21,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.0.140608.2

Values on generators

(79,53,41)(79,53,41)(1,1,i)(1,-1,-i)

First values

aa 1-11133557799111115151717191921212323
χ104(5,a) \chi_{ 104 }(5, a) 1-1111-1iiii11i-ii-i1-1iii-i1-1
sage: chi.jacobi_sum(n)
 
χ104(5,a)   \chi_{ 104 }(5,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ104(5,))   \tau_{ a }( \chi_{ 104 }(5,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ104(5,),χ104(n,))   J(\chi_{ 104 }(5,·),\chi_{ 104 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ104(5,))  K(a,b,\chi_{ 104 }(5,·)) \; at   a,b=\; a,b = e.g. 1,2