Properties

Label 105.74
Modulus 105105
Conductor 105105
Order 66
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([3,3,4]))
 
pari: [g,chi] = znchar(Mod(74,105))
 

Basic properties

Modulus: 105105
Conductor: 105105
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 105.o

χ105(44,)\chi_{105}(44,\cdot) χ105(74,)\chi_{105}(74,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.0.8103375.1

Values on generators

(71,22,31)(71,22,31)(1,1,e(23))(-1,-1,e\left(\frac{2}{3}\right))

First values

aa 1-1112244881111131316161717191922222323
χ105(74,a) \chi_{ 105 }(74, a) 1-111e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)11e(16)e\left(\frac{1}{6}\right)1-1e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)1-1e(13)e\left(\frac{1}{3}\right)
sage: chi.jacobi_sum(n)
 
χ105(74,a)   \chi_{ 105 }(74,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ105(74,))   \tau_{ a }( \chi_{ 105 }(74,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ105(74,),χ105(n,))   J(\chi_{ 105 }(74,·),\chi_{ 105 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ105(74,))  K(a,b,\chi_{ 105 }(74,·)) \; at   a,b=\; a,b = e.g. 1,2