Properties

Label 105.g
Modulus $105$
Conductor $105$
Order $2$
Real yes
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,1,1]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(104,105))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Kronecker symbol representation

sage: kronecker_character(105)
 
pari: znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{105}{\bullet}\right)\)

Basic properties

Modulus: \(105\)
Conductor: \(105\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{105}) \)

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(13\) \(16\) \(17\) \(19\) \(22\) \(23\)
\(\chi_{105}(104,\cdot)\) \(1\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(1\)