Properties

Label 1053.1024
Modulus $1053$
Conductor $1053$
Order $54$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1053, base_ring=CyclotomicField(54))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,45]))
 
pari: [g,chi] = znchar(Mod(1024,1053))
 

Basic properties

Modulus: \(1053\)
Conductor: \(1053\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(54\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1053.ce

\(\chi_{1053}(4,\cdot)\) \(\chi_{1053}(88,\cdot)\) \(\chi_{1053}(121,\cdot)\) \(\chi_{1053}(205,\cdot)\) \(\chi_{1053}(238,\cdot)\) \(\chi_{1053}(322,\cdot)\) \(\chi_{1053}(355,\cdot)\) \(\chi_{1053}(439,\cdot)\) \(\chi_{1053}(472,\cdot)\) \(\chi_{1053}(556,\cdot)\) \(\chi_{1053}(589,\cdot)\) \(\chi_{1053}(673,\cdot)\) \(\chi_{1053}(706,\cdot)\) \(\chi_{1053}(790,\cdot)\) \(\chi_{1053}(823,\cdot)\) \(\chi_{1053}(907,\cdot)\) \(\chi_{1053}(940,\cdot)\) \(\chi_{1053}(1024,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: Number field defined by a degree 54 polynomial

Values on generators

\((326,730)\) → \((e\left(\frac{5}{27}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(14\)\(16\)\(17\)
\( \chi_{ 1053 }(1024, a) \) \(1\)\(1\)\(e\left(\frac{1}{54}\right)\)\(e\left(\frac{1}{27}\right)\)\(e\left(\frac{41}{54}\right)\)\(e\left(\frac{7}{54}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{13}{54}\right)\)\(e\left(\frac{4}{27}\right)\)\(e\left(\frac{2}{27}\right)\)\(e\left(\frac{7}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1053 }(1024,a) \;\) at \(\;a = \) e.g. 2