Properties

Label 1053.245
Modulus $1053$
Conductor $1053$
Order $108$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1053, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,63]))
 
pari: [g,chi] = znchar(Mod(245,1053))
 

Basic properties

Modulus: \(1053\)
Conductor: \(1053\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(108\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1053.cn

\(\chi_{1053}(2,\cdot)\) \(\chi_{1053}(11,\cdot)\) \(\chi_{1053}(32,\cdot)\) \(\chi_{1053}(59,\cdot)\) \(\chi_{1053}(119,\cdot)\) \(\chi_{1053}(128,\cdot)\) \(\chi_{1053}(149,\cdot)\) \(\chi_{1053}(176,\cdot)\) \(\chi_{1053}(236,\cdot)\) \(\chi_{1053}(245,\cdot)\) \(\chi_{1053}(266,\cdot)\) \(\chi_{1053}(293,\cdot)\) \(\chi_{1053}(353,\cdot)\) \(\chi_{1053}(362,\cdot)\) \(\chi_{1053}(383,\cdot)\) \(\chi_{1053}(410,\cdot)\) \(\chi_{1053}(470,\cdot)\) \(\chi_{1053}(479,\cdot)\) \(\chi_{1053}(500,\cdot)\) \(\chi_{1053}(527,\cdot)\) \(\chi_{1053}(587,\cdot)\) \(\chi_{1053}(596,\cdot)\) \(\chi_{1053}(617,\cdot)\) \(\chi_{1053}(644,\cdot)\) \(\chi_{1053}(704,\cdot)\) \(\chi_{1053}(713,\cdot)\) \(\chi_{1053}(734,\cdot)\) \(\chi_{1053}(761,\cdot)\) \(\chi_{1053}(821,\cdot)\) \(\chi_{1053}(830,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((326,730)\) → \((e\left(\frac{1}{54}\right),e\left(\frac{7}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(14\)\(16\)\(17\)
\( \chi_{ 1053 }(245, a) \) \(1\)\(1\)\(e\left(\frac{65}{108}\right)\)\(e\left(\frac{11}{54}\right)\)\(e\left(\frac{73}{108}\right)\)\(e\left(\frac{77}{108}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{35}{108}\right)\)\(e\left(\frac{17}{54}\right)\)\(e\left(\frac{11}{27}\right)\)\(e\left(\frac{7}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1053 }(245,a) \;\) at \(\;a = \) e.g. 2