from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1053, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([98,9]))
pari: [g,chi] = znchar(Mod(119,1053))
χ1053(2,⋅)
χ1053(11,⋅)
χ1053(32,⋅)
χ1053(59,⋅)
χ1053(119,⋅)
χ1053(128,⋅)
χ1053(149,⋅)
χ1053(176,⋅)
χ1053(236,⋅)
χ1053(245,⋅)
χ1053(266,⋅)
χ1053(293,⋅)
χ1053(353,⋅)
χ1053(362,⋅)
χ1053(383,⋅)
χ1053(410,⋅)
χ1053(470,⋅)
χ1053(479,⋅)
χ1053(500,⋅)
χ1053(527,⋅)
χ1053(587,⋅)
χ1053(596,⋅)
χ1053(617,⋅)
χ1053(644,⋅)
χ1053(704,⋅)
χ1053(713,⋅)
χ1053(734,⋅)
χ1053(761,⋅)
χ1053(821,⋅)
χ1053(830,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(326,730) → (e(5449),e(121))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 14 | 16 | 17 |
χ1053(119,a) |
1 | 1 | e(108107) | e(5453) | e(10867) | e(10847) | e(3635) | e(1811) | e(10841) | e(5423) | e(2726) | e(91) |