Properties

Label 1053.515
Modulus $1053$
Conductor $1053$
Order $108$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1053, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([74,27]))
 
pari: [g,chi] = znchar(Mod(515,1053))
 

Basic properties

Modulus: \(1053\)
Conductor: \(1053\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(108\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1053.cl

\(\chi_{1053}(5,\cdot)\) \(\chi_{1053}(47,\cdot)\) \(\chi_{1053}(83,\cdot)\) \(\chi_{1053}(86,\cdot)\) \(\chi_{1053}(122,\cdot)\) \(\chi_{1053}(164,\cdot)\) \(\chi_{1053}(200,\cdot)\) \(\chi_{1053}(203,\cdot)\) \(\chi_{1053}(239,\cdot)\) \(\chi_{1053}(281,\cdot)\) \(\chi_{1053}(317,\cdot)\) \(\chi_{1053}(320,\cdot)\) \(\chi_{1053}(356,\cdot)\) \(\chi_{1053}(398,\cdot)\) \(\chi_{1053}(434,\cdot)\) \(\chi_{1053}(437,\cdot)\) \(\chi_{1053}(473,\cdot)\) \(\chi_{1053}(515,\cdot)\) \(\chi_{1053}(551,\cdot)\) \(\chi_{1053}(554,\cdot)\) \(\chi_{1053}(590,\cdot)\) \(\chi_{1053}(632,\cdot)\) \(\chi_{1053}(668,\cdot)\) \(\chi_{1053}(671,\cdot)\) \(\chi_{1053}(707,\cdot)\) \(\chi_{1053}(749,\cdot)\) \(\chi_{1053}(785,\cdot)\) \(\chi_{1053}(788,\cdot)\) \(\chi_{1053}(824,\cdot)\) \(\chi_{1053}(866,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((326,730)\) → \((e\left(\frac{37}{54}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(14\)\(16\)\(17\)
\( \chi_{ 1053 }(515, a) \) \(1\)\(1\)\(e\left(\frac{101}{108}\right)\)\(e\left(\frac{47}{54}\right)\)\(e\left(\frac{1}{108}\right)\)\(e\left(\frac{77}{108}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{71}{108}\right)\)\(e\left(\frac{35}{54}\right)\)\(e\left(\frac{20}{27}\right)\)\(e\left(\frac{1}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1053 }(515,a) \;\) at \(\;a = \) e.g. 2