Properties

Label 107.36
Modulus 107107
Conductor 107107
Order 5353
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(107, base_ring=CyclotomicField(106))
 
M = H._module
 
chi = DirichletCharacter(H, M([36]))
 
pari: [g,chi] = znchar(Mod(36,107))
 

Basic properties

Modulus: 107107
Conductor: 107107
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 5353
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 107.c

χ107(3,)\chi_{107}(3,\cdot) χ107(4,)\chi_{107}(4,\cdot) χ107(9,)\chi_{107}(9,\cdot) χ107(10,)\chi_{107}(10,\cdot) χ107(11,)\chi_{107}(11,\cdot) χ107(12,)\chi_{107}(12,\cdot) χ107(13,)\chi_{107}(13,\cdot) χ107(14,)\chi_{107}(14,\cdot) χ107(16,)\chi_{107}(16,\cdot) χ107(19,)\chi_{107}(19,\cdot) χ107(23,)\chi_{107}(23,\cdot) χ107(25,)\chi_{107}(25,\cdot) χ107(27,)\chi_{107}(27,\cdot) χ107(29,)\chi_{107}(29,\cdot) χ107(30,)\chi_{107}(30,\cdot) χ107(33,)\chi_{107}(33,\cdot) χ107(34,)\chi_{107}(34,\cdot) χ107(35,)\chi_{107}(35,\cdot) χ107(36,)\chi_{107}(36,\cdot) χ107(37,)\chi_{107}(37,\cdot) χ107(39,)\chi_{107}(39,\cdot) χ107(40,)\chi_{107}(40,\cdot) χ107(41,)\chi_{107}(41,\cdot) χ107(42,)\chi_{107}(42,\cdot) χ107(44,)\chi_{107}(44,\cdot) χ107(47,)\chi_{107}(47,\cdot) χ107(48,)\chi_{107}(48,\cdot) χ107(49,)\chi_{107}(49,\cdot) χ107(52,)\chi_{107}(52,\cdot) χ107(53,)\chi_{107}(53,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ53)\Q(\zeta_{53})
Fixed field: Number field defined by a degree 53 polynomial

Values on generators

22e(1853)e\left(\frac{18}{53}\right)

First values

aa 1-111223344556677889910101111
χ107(36,a) \chi_{ 107 }(36, a) 1111e(1853)e\left(\frac{18}{53}\right)e(4153)e\left(\frac{41}{53}\right)e(3653)e\left(\frac{36}{53}\right)e(5153)e\left(\frac{51}{53}\right)e(653)e\left(\frac{6}{53}\right)e(3253)e\left(\frac{32}{53}\right)e(153)e\left(\frac{1}{53}\right)e(2953)e\left(\frac{29}{53}\right)e(1653)e\left(\frac{16}{53}\right)e(2553)e\left(\frac{25}{53}\right)
sage: chi.jacobi_sum(n)
 
χ107(36,a)   \chi_{ 107 }(36,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ107(36,))   \tau_{ a }( \chi_{ 107 }(36,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ107(36,),χ107(n,))   J(\chi_{ 107 }(36,·),\chi_{ 107 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ107(36,))  K(a,b,\chi_{ 107 }(36,·)) \; at   a,b=\; a,b = e.g. 1,2