Properties

Label 1071.1024
Modulus $1071$
Conductor $1071$
Order $12$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1071, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,4,9]))
 
pari: [g,chi] = znchar(Mod(1024,1071))
 

Basic properties

Modulus: \(1071\)
Conductor: \(1071\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1071.cg

\(\chi_{1071}(4,\cdot)\) \(\chi_{1071}(268,\cdot)\) \(\chi_{1071}(319,\cdot)\) \(\chi_{1071}(1024,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.29428267022381449968353937.2

Values on generators

\((596,766,190)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{1}{3}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(19\)\(20\)
\( \chi_{ 1071 }(1024, a) \) \(1\)\(1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(-i\)\(-1\)\(e\left(\frac{7}{12}\right)\)\(i\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1071 }(1024,a) \;\) at \(\;a = \) e.g. 2